24 research outputs found

    The origin of tail-like structures around protoplanetary disks

    Full text link
    Aims. We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU Orionis-type stars. Methods. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close encounter with an intruder star were modeled using the numerical hydrodynamics code FEOSAD. Both the gas and dust dynamics were taken into account, including dust growth and mutual friction between the gas and dust components. Only plane-of-the-disk encounters were considered. Results. Ejected clumps produce a unique type of tail that is characterized by a bow-shock shape. Such tails originate from the supersonic motion of ejected clumps through the dense envelope that often surrounds young gravitationally unstable protostellar disks. The ejected clumps either sit at the head of the tail-like structure or disperse if their mass is insufficient to withstand the head wind of the envelope. On the other hand, close encounters with quiescent protoplanetary disks produce three types of the tail-like structure; we define these as pre-collisional, post-collisional, and spiral tails. These tails can in principle be distinguished from one another by particular features of the gas and dust flow in and around them. We find that the brown-dwarf-mass intruders do not capture circumintruder disks during the encounter, while the subsolar-mass intruders can acquire appreciable circumintruder disks with elevated dust-to-gas ratios, which can ease their observational detection. However, this is true only for prograde collisions; the retrograde intruders fail to collect appreciable amounts of gas or dust from the disk of the target. The mass of gas in the tail varies in the range 0.85-11.8 MJup, while the total mass of dust lies in the 1.75-30.1 M⊙ range, with the spiral tails featuring the highest masses. The predicted mass of dust in the model tail-like structures is therefore higher than what was inferred for similar structures in SU Aur, FU Ori, and Z CMa, making their observational detection feasible. Conclusions. Tail-like structures around protostellar and protoplanetary disks can be used to infer interesting phenomena such as clump ejection or close encounters. In particular, the bow-shock morphology of the tails could point to clump ejections as a possible formation mechanism. Further numerical and observational studies are needed to better understand the detectability and properties of the tails. © ESO 2020.Work was supported by the Russian Fund for Fundamental Research, Russian-Taiwanese project 19-52-52011 and MoST project 108-2923-M-001-006-MY3. H.B.L. is supported by the Ministry of Science and Technology (MoST) of Taiwan, grant No. 108-2112-M-001-002-MY3. V.G.E. acknowledges the Swedish Institute for a travel grant allowing to visit Lund University. The simulations were performed on the Vienna Scientific Cluster

    Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring

    Full text link
    We propose to use an internal polarized hydrogen storage cell gas target in the AD ring to determine for the first time the two total spin-dependent pbar-p cross sections sigma_1 and sigma_2 at antiproton beam energies in the range from 50 to 450 MeV. The data obtained are of interest by themselves for the general theory of pbar-p interactions since they will provide a first experimental constraint of the spin-spin dependence of the nucleon-antinucleon potential in the energy range of interest. In addition, measurements of the polarization buildup of stored antiprotons are required to define the optimum parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to feed a double-polarized asymmetric pbar-p collider with polarized antiprotons. Such a machine has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense stored beam of polarized antiprotons will provide access to a wealth of single- and double-spin observables, thereby opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER

    Multiwavelength detection of an ongoing FUOr-type outburst on a low-mass YSO

    Get PDF
    ©2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/During the pre-main-sequence evolution, Young Stellar Objects (YSOs) assemble most of their mass during the episodic accretion process. The rarely seen FUOr-type events are valuable laboratories to investigate the outbursting nature of YSOs. Here, we present multiwavelength detection of a high-amplitude eruptive source in the young open cluster VdBH 221 with an ongoing outburst, including optical to mid-infrared time series and near-infrared spectra. The initial outburst has an exceptional amplitude of >6.3 mag in Gaia and 4.6 mag in Ks, with a peak luminosity up to 16 L⊙ and a peak mass accretion rate of 1.4 × 10-5 M⊙ yr-1. The optical to infrared spectral energy distribution of this object is consistent with a low-mass star (0.2 M⊙) with a modest extinction (AV < 2 mag). A 100-d delay between optical and infrared rising stages is detected, suggesting an outside-in origin of the instability. The spectroscopic features of this object reveal a self-luminous accretion disc, very similar to FU Orionis, with a low line-of-sight extinction. Most recently, there has been a gradual increase in brightness throughout the wavelength range, possibly suggesting an enhancement of the mass accretion rate.Peer reviewe

    Bacteria Hunt: Evaluating multi-paradigm BCI interaction

    No full text
    The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having one condition in which the subject played the game with real feedback, and another with sham feedback. The feedback did not seem to affect the game experience (such as sense of control and tension) or the objective indicators of relaxation, alpha activity and heart rate. The results are discussed with regard to clinical neurofeedback studies. The second goal was to look into possible interactions between the two BCI paradigms used in the game: steady-state visually-evoked potentials (SSVEP) as an indicator of concentration, and alpha activity as a measure of relaxation. SSVEP stimulation activates the cortex and can thus block the alpha rhythm. Despite this effect, subjects were able to keep their alpha power up, in compliance with the instructed relaxation task. In addition to the main goals, a new SSVEP detection algorithm was developed and evaluated. © 2010 The Author(s)

    High precision momentum calibration of the magnetic spectrometers at MAMI for hypernuclear binding energy determination

    No full text
    We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF) differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy δp/p≤10−4, which will be crucial for high precision determination of hypernuclear masses

    The chemistry of episodic accretion

    Get PDF
    Episodic accretion is an important process in the evolution of young stars and their surroundings. A consequence of an episodic accretion event is a luminosity burst, which heats the protostellar environment and has a long lasting impact on the chemical evolution of the disk and envelope of young stars. We present a new model for the chemistry of episodic accretion based on the 2D radiation thermo-chemical disk code ProDiMo. We discuss the impact of an episodic accretion burst on the chemical evolution of CO and its observables. Furthermore we present a model for the outbursting source V883 Ori where we fitted available observational data to get an accurate physical structure that allows for a detailed study of the chemistry

    High precision momentum calibration of the magnetic spectrometers at MAMI for hypernuclear binding energy determination

    No full text
    We propose a new method for absolute momentum calibration of magnetic spectrometers used in nuclear physics, using the time-of-flight (TOF) differences of pairs of particles with different masses. In cases where the flight path is not known, a calibration can be determined by using the TOF differences of two pair combinations of three particles. A Cherenkov detector, read out by a radio frequency photomultiplier tube, is considered as the high-resolution and highly stable TOF detector. By means of Monte Carlo simulations it is demonstrated that the magnetic spectrometers at the MAMI electron-scattering facility can be calibrated absolutely with an accuracy δp/p≤10−4, which will be crucial for high precision determination of hypernuclear masses

    Advanced picosecond precision Radio Frequency Timer

    No full text
    International audienceA new type of radio frequency (RF) timing technique is presented. It is based on a helical deflector, which performs circular or elliptical sweeps of photo- or secondary electrons, accelerated to keV energies, by means of RF fields in the 500–1000 MHz range. By converting a time distribution of the electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing, similar to streak cameras. Detection of the scanned electrons, using a position sensitive detector based on microchannel plates and a delay line anode, resulted in a timing resolution of 10 ps, which can be potentially improved to 1 ps. RF-Timer-based single photon and heavy ion detectors have potential applications in different fields of science and industry, which include high energy nuclear physics and imaging technologies. This technique could play a crucial role in developing of sub 10 ps Time-of-Flight Positron Emission Tomography
    corecore