679 research outputs found

    Research on utilization of part task spatial orientation information in the dynamic simulator

    Get PDF
    Error and control efficiency analysis of pilots exposed to simulated pitch, roll, yaw, and altitude variation

    Wear particle dynamics drive the difference between repeated and non-repeated reciprocated sliding

    Get PDF
    The dependence of the sliding mode (repeated vs. non-repeated reciprocated sliding) on the friction and wear behavior of ball-on-flat, brittle non-metallic interfaces in ambient air conditions is evaluated. Repeated sliding promotes the formation of a third body (compressed wear particles) that stabilizes the friction. Non-repeated sliding shows reduced evidence of third body formation, and instead a steady increase in friction. The proposed mechanism driving the non-repeated friction behavior is attributed to a gradual reduction in the ball surface roughness, leading to an increased area of real contact and greater capillary bridge forming across non-contact regions of the interface

    Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies

    Full text link
    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in excited-state spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm to these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure

    Ultrathin Oxide Films by Atomic Layer Deposition on Graphene

    Full text link
    In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted

    The influence of corrosion on diamond-like carbon topography and friction at the nanoscale

    Get PDF
    The influence of corrosion upon the nanoscale topography and friction response of a hydrogenated amorphous carbon film (a-C:H) was investigated. Electrochemical atomic force microscopy was used to characterise topographical changes to the coating at two oxidative potentials. Corrosion of the coating at 1.5 V (corrosion rate 0.5 nm h−1) resulted in no changes to the nanoscale topography; whereas corrosion at 2.5 V (corrosion rate 26.4 nm h−1) caused the root mean square roughness of the a-C:H film topography to decrease, but the local fine-scale irregularity or ‘jaggedness’ of the surface to increase. X-ray photoelectron spectroscopy revealed that corrosion at both potentials oxidised the a-C:H surface to form alcohol, carbonyl and carboxyl groups. Lateral force microscopy and adhesion force measurements showed that both the friction force and surface adhesion of the coating increased upon corrosion. The outcome was attributed to the surface oxidation that had occurred at both oxidative potentials, resulting in several potential mechanisms including increased attractive intermolecular interactions and capillary forces. The highest friction coefficient was observed for the a-C:H film corroded at 2.5 V, and identified as a consequence of the jagged surface topography promoting an interlocking friction mechanism

    Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Get PDF
    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces

    Atmospheric pressure roll-to-roll plasma enhanced CVD of high quality silica-like bilayer encapsulation films

    Get PDF
    A glow like atmospheric pressure dielectric barrier discharge in a roll-to-roll setup was used to synthesize 90 nm silica-like bilayer encapsulation films composed of a 30 nm dense “barrier layer” and a comparatively less dense 60 nm “buffer layer” onto a polyethylene 2,6 naphthalate substrate by means of plasma enhanced chemical vapor deposition. Tetraethyl orthosilicate was used as the precursor gas, together with a mixture of nitrogen, oxygen, and argon. The microstructure, chemical composition, morphology, and permeation properties of the films were studied as a function of the specific energy delivered per precursor molecule, and oxygen concentration in the gas mixture, during the deposition of the barrier layer. The presence of the buffer layer within the bilayer architecture critically enhanced the encapsulation performance of the bilayer films, and this in conjunction with increasing the specific energy delivered per precursor molecule during the barrier layer deposition to a value of 20 keV, enabled an effective water vapor transmission rate as low as 6.9 × 10−4 g m−2 d−1 (at 40 °C, 90% relative humidity (RH)) to be achieved. Furthermore, the bilayer film structure has given rise to a remarkable 50% reduction in deposition energy consumption per barrier area with respect to single layer silica-like films of equivalent encapsulation performance and thickness.</p
    corecore