26 research outputs found

    Obnovljivi izvori energije u kontekstu morske tehnologije – sadašnjost i budući trendovi

    Get PDF
    Energija mora kao jedan od najmanje iskorištenih obnovljivih izvora energije zahtjeva više pažnje u znanstvenom i stručnom smislu. Ovaj rad daje sažeti pregled potencijala energije mora, te različitih vrsta i principa rada različitih uređaja za iskorištavanje energije valova u kojoj je sadržana najveća količina neiskorištenog potencijala energije mora

    Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis

    Full text link
    Oncolytic virotherapy (OV) has been emerging as a promising novel cancer treatment that may be further combined with the existing therapeutic modalities to enhance their effects. To investigate how OV could enhance chemotherapy, we propose an ODE based model describing the interactions between tumour cells, the immune response, and a treatment combination with chemotherapy and oncolytic viruses. Stability analysis of the model with constant chemotherapy treatment rates shows that without any form of treatment, a tumour would grow to its maximum size. It also demonstrates that chemotherapy alone is capable of clearing tumour cells provided that the drug efficacy is greater than the intrinsic tumour growth rate. Furthermore, OV alone may not be able to clear tumour cells from body tissue but would rather enhance chemotherapy if viruses with high viral potency are used. To assess the combined effect of OV and chemotherapy we use the forward sensitivity index to perform a sensitivity analysis, with respect to chemotherapy key parameters, of the virus basic reproductive number and the tumour endemic equilibrium. The results from this sensitivity analysis indicate the existence of a critical dose of chemotherapy above which no further significant reduction in the tumour population can be observed. Numerical simulations show that a successful combinational therapy of the chemotherapeutic drugs and viruses depends mostly on the virus burst size, infection rate, and the amount of drugs supplied. Optimal control analysis was performed, by means of Pontryagin's principle, to further refine predictions of the model with constant treatment rates by accounting for the treatment costs and sides effects.Comment: This is a preprint of a paper whose final and definite form is with 'Mathematical Biosciences and Engineering', ISSN 1551-0018 (print), ISSN 1547-1063 (online), available at [http://www.aimsciences.org/journal/1551-0018]. Submitted 27-March-2018; revised 04-July-2018; accepted for publication 10-July-201

    Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment

    Get PDF
    Chemovirotherapy is a combination therapy with chemotherapy and oncolytic viruses. It is gaining more interest and attracting more attention in the clinical setting due to its effective therapy and potential synergistic interactions against cancer. In this paper, we develop and analyse a mathematical model in the form of parabolic non-linear partial differential equations to investigate the spatiotemporal dynamics of tumour cells under chemovirotherapy treatment. The proposed model consists of uninfected and infected tumour cells, a free virus, and a chemotherapeutic drug. The analysis of the model is carried out for both the temporal and spatiotemporal cases. Travelling wave solutions to the spatiotemporal model are used to determine the minimum wave speed of tumour invasion. A sensitivity analysis is performed on the model parameters to establish the key parameters that promote cancer remission during chemovirotherapy treatment. Model analysis of the temporal model suggests that virus burst size and virus infection rate determine the success of the virotherapy treatment, whereas travelling wave solutions to the spatiotemporal model show that tumour diffusivity and growth rate are critical during chemovirotherapy. Simulation results reveal that chemovirotherapy is more effective and a good alternative to either chemotherapy or virotherapy, which is in agreement with the recent experimental studies.University of Pretoria and DST/NRF SARChI Chair in Mathematical Models and Methods in Bioengineering and Biosciences.http://www.tandfonline.com/loi/tjbd20hj2017Mathematics and Applied Mathematic

    Oncolytic potency and reduced virus tumorspecificity in oncolytic virotherapy : a mathematical modelling approach

    Get PDF
    In the present paper, we address by means of mathematical modeling the following main question: How can oncolytic virus infection of some normal cells in the vicinity of tumor cells enhance oncolytic virotherapy? We formulate a mathematical model describing the interactions between the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and antiviral immune responses. The model consists of a system of delay differential equations with one (discrete) delay. We derive the model's basic reproductive number within tumor and normal cell populations and use their ratio as a metric for virus tumor-specificity. Numerical simulations are performed for different values of the basic reproduction numbers and their ratios to investigate potential trade-offs between tumor reduction and normal cells losses. A fundamental feature unravelled by the model simulations is its great sensitivity to parameters that account for most variation in the early or late stages of oncolytic virotherapy. From a clinical point of view, our findings indicate that designing an oncolytic virus that is not 100% tumor-specific can increase virus particles, which in turn, can further infect tumor cells. Moreover, our findings indicate that when infected tissues can be regenerated, oncolytic viral infection of normal cells could improve cancer treatment.S1 Text. Supplemental information. Contents: 1) Parameter estimation. 2) Model Basic Reproductive Number. 3) Stability analysis of the virus free steady states. 4) MATLAB Syntax for the ODE system counterpart of the model.http://www.plosone.orgam2017Mathematics and Applied Mathematic

    Atlantic cod (Gadus morhua) assessment approaches in the North and Baltic Sea: A comparison of environmental DNA analysis versus bottom trawl sampling

    Get PDF
    14 pages, 4 figures, 5 tables.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)The assessment of fish stocks is often dependent on scientific trawl fisheries surveys, which are both invasive and costly. The analysis of environmental DNA (eDNA) from water samples is regarded as a non-invasive and cost-effective alternative, but meaningful performance evaluations are required for a wider application. The goal of this study was to comparatively analyze a newly developed, more sensitive real-time PCR based eDNA approach with bottom trawl fisheries catches to locally detect and quantify Atlantic cod (Gadus morhua) in the North and Baltic Seas. With a species-specificity of the qPCR assay of 100%, a minimal limit of 15 Cytochrome b eDNA copies was determined for the detection of cod. In addition, a Gaussian processing regression proved a significant correlation (95%) between eDNA (copies per L of water) and cod biomass (CPUE/Ha) found by bottom trawling. The results presented here prove the potential of eDNA analyses for quantitative assessments of commercial fish stocks in the open ocean, although additional comparative analyses are needed to demonstrate its performance under different oceanographic conditionsThe information and views set out in this manuscript are based on scientific data and information collected under Service Contract “Improving cost-efficiency of fisheries research surveys and fish stocks assessments using next-generation genetic sequencing methods [EMFF/2018/015]” signed with the European Climate, Infrastructure and Environment Executive Agency (CINEA) and funded by the European UnionPeer reviewe

    Activation of the immune response by cytokines and its effect on tumour cells: a mathematical model

    No full text
    In this paper, we present a mathematical model at the cellular level of the tumour–immune competition mediated by the cytokines. The model consists of a system of nonlinear differential equations describing the intracellular interactions between the tumour and the immune cells in the presence of the cytokines. A detailed phenomenological description of the model based on the kinetic theory for active particle approach is carried out to formulate the model. Well-posedness is presented to establish local and global existence. Numerical simulations are addressed to show how initial conditions and model parameters influence the output of the model. Under a suitable choice of the model’s key parameters and the cytokines’ initial activation levels, the simulation results show that the activated immune system is able to achieve a total elimination of the cancer cells

    Oncolytic potency and reduced virus tumorspecificity in oncolytic virotherapy. A mathematical modelling approach

    Get PDF
    CITATION: Mahasa, K. J., et al. 2017. Oncolytic potency and reduced virus tumorspecificity in oncolytic virotherapy. a mathematical modelling approach. PLoS ONE 12(9):e0184347, doi:10.1371/journal.pone.0184347.The original publication is available at https://journals.plos.org/plosoneIn the present paper, we address by means of mathematical modeling the following main question: How can oncolytic virus infection of some normal cells in the vicinity of tumor cells enhance oncolytic virotherapy? We formulate a mathematical model describing the interactions between the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and antiviral immune responses. The model consists of a system of delay differential equations with one (discrete) delay. We derive the model’s basic reproductive number within tumor and normal cell populations and use their ratio as a metric for virus tumor-specificity. Numerical simulations are performed for different values of the basic reproduction numbers and their ratios to investigate potential trade-offs between tumor reduction and normal cells losses. A fundamental feature unravelled by the model simulations is its great sensitivity to parameters that account for most variation in the early or late stages of oncolytic virotherapy. From a clinical point of view, our findings indicate that designing an oncolytic virus that is not 100% tumor-specific can increase virus particles, which in turn, can further infect tumor cells. Moreover, our findings indicate that when infected tissues can be regenerated, oncolytic viral infection of normal cells could improve cancer treatment.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184347Publisher's versio

    Enhancement of chemotherapy using oncolytic virotherapy : mathematical and optimal control analysis

    No full text
    Oncolytic virotherapy has been emerging as a promising novel cancer treatment which may be further combined with the existing therapeutic modalities to enhance their effects. To investigate how virotherapy could enhance chemotherapy, we propose an ODE based mathematical model describing the interactions between tumour cells, the immune response, and a treatment combination with chemotherapy and oncolytic viruses. Stability analysis of the model with constant chemotherapy treatment rates shows that without any form of treatment, a tumour would grow to its maximum size. It also demonstrates that chemotherapy alone is capable of clearing tumour cells provided that the drug efficacy is greater than the intrinsic tumour growth rate. Furthermore, virotherapy alone may not be able to clear tumour cells from body tissue but would rather enhance chemotherapy if viruses with high viral potency are used. To assess the combined effect of virotherapy and chemotherapy we use the forward sensitivity index to perform a sensitivity analysis, with respect to chemotherapy key parameters, of the virus basic reproductive number and the tumour endemic equilibrium. The results from this sensitivity analysis indicate the existence of a critical dose of chemotherapy above which no further significant reduction in the tumour population can be observed. Numerical simulations show that a successful combinational therapy of the chemotherapeutic drugs and viruses depends mostly on the virus burst size, infection rate, and the amount of drugs supplied. Optimal control analysis was performed, by means of the Pontryagin's maximum principle, to further refine predictions of the model with constant treatment rates by accounting for the treatment costs and sides effects. Results from this analysis suggest that the optimal drug and virus combination correspond to half their maximum tolerated doses. This is in agreement with the results from stability and sensitivity analyses.Joseph Malinzi was jointly supported by the University of Pretoria and DST/NRF SARChI Chair in Mathematical Models and Methods in Bioengineering and Biosciences. Amina Eladdadi and K.A. Jane White would like to acknowledge and thank the UK-QSP Network (Grant-EP/N005481/1) for their financial support to attend the QSP-1st Problem Workshop and collaborate on this research. Torres was supported by FCT through CIDMA, project UID/MAT/04106/2013, and TOCCATA, project PTDC/EEI-AUT/2933/2014, funded by FEDER and COM-PETE 2020.http://aimsciences.org/journal/1551-00182019-12-01hj2018Mathematics and Applied Mathematic
    corecore