17 research outputs found

    Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy

    Get PDF
    OBJECTIVES: We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). METHODS: In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. RESULTS: Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC],0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. CONCLUSIONS: Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined.National Institutes of Health (U.S) (R0I-CA097966)National Institutes of Health (U.S) (P4I-RR02594- 21

    α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies

    Get PDF
    Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson´s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe´s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.Fil: Abdelkarim, Hazem. University of Illinois; Estados UnidosFil: Marshall, Michael S.. University of Illinois; Estados UnidosFil: Scesa, Giuseppe. University of Illinois; Estados UnidosFil: Smith, Rachael A.. University of Illinois; Estados UnidosFil: Rue, Emily. University of Illinois; Estados UnidosFil: Marshall, Jeffrey. University of Illinois; Estados UnidosFil: Elackattu, Vince. University Of Illinois Chicago; Estados UnidosFil: Stoskute, Monika. University Of Illinois Chicago; Estados UnidosFil: Issa, Yazan. University Of Illinois Chicago; Estados UnidosFil: Santos, Marta. University Of Illinois Chicago; Estados UnidosFil: Nguyen, Duc. University Of Illinois Chicago; Estados UnidosFil: Hauck, Zane. University Of Illinois Chicago; Estados UnidosFil: Van Breemen, Richard B.. University Of Illinois Chicago; Estados UnidosFil: Celej, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Gaponenko, Vadim. University Of Illinois Chicago; Estados UnidosFil: Bongarzone, Ernesto R.. University Of Illinois Chicago; Estados Unido

    microRNA-219 Reduces Viral Load and Pathologic Changes in Theiler's Virus-Induced Demyelinating Disease

    Get PDF
    Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties. MicroRNAs (miRs) are small noncoding RNAs that regulate a myriad of biological processes by controlling gene expression. In the latest issue of Molecular Therapy, Moyano et al. show that intranasal delivery of miR-219 in a mouse model of viral demyelination reduces neurological burden and improves life quality through anti-inflammatory and anti-viral mechanisms.Fil: Moyano, Ana Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina. University of Illinois; Estados UnidosFil: Steplowski, Jeffrey. University of Illinois; Estados UnidosFil: Wang, Haibo. Cincinnati Children's Hospital Medical Center; Estados UnidosFil: Son, Kyung No. University of Illinois; Estados UnidosFil: Rapolti, Diana I.. University of Illinois; Estados UnidosFil: Marshall, Jeffrey. University of Illinois; Estados UnidosFil: Elackattu, Vince. University of Illinois; Estados UnidosFil: Marshall, Michael S.. University of Illinois; Estados UnidosFil: Hebert, Amy K.. University of Illinois; Estados UnidosFil: Reiter, Cory R.. University of Illinois; Estados UnidosFil: Ulloa, Viviana. University of Illinois; Estados UnidosFil: Pituch, Katarzyna C.. University of Illinois; Estados UnidosFil: Givogri, Maria I.. University of Illinois; Estados UnidosFil: Lu, Q. Richard. Cincinnati Children's Hospital Medical Center; Estados UnidosFil: Lipton, Howard L.. University of Illinois; Estados UnidosFil: Bongarzone, Ernesto R.. University of Illinois; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentin

    Model-based spectroscopic analysis of the oral cavity: impact of anatomy

    No full text
    In order to evaluate the impact of anatomy on the spectral properties of oral tissue, we used reflectance and fluorescence spectroscopy to characterize nine different anatomic sites. All spectra were collected in vivo from healthy oral mucosa. We analyzed 710 spectra collected from the oral cavity of 79 healthy volunteers. From the spectra, we extracted spectral parameters related to the morphological and biochemical properties of the tissue. The parameter distributions for the nine sites were compared, and we also related the parameters to the physical properties of the tissue site. k-Means cluster analysis was performed to identify sites or groups of sites that showed similar or distinct spectral properties. For the majority of the spectral parameters, certain sites or groups of sites exhibited distinct parameter distributions. Sites that are normally keratinized, most notably the hard palate and gingiva, were distinct from nonkeratinized sites for a number of parameters and frequently clustered together. The considerable degree of spectral contrast (differences in the spectral properties) between anatomic sites was also demonstrated by successfully discriminating between several pairs of sites using only two spectral parameters. We tested whether the 95% confidence interval for the distribution for each parameter, extracted from a subset of the tissue data could correctly characterize a second set of validation data. Excellent classification accuracy was demonstrated. Our results reveal that intrinsic differences in the anatomy of the oral cavity produce significant spectral contrasts between various sites, as reflected in the extracted spectral parameters. This work provides an important foundation for guiding the development of spectroscopic-based diagnostic algorithms for oral cancer.National Institutes of Health (Grants No. CA097966-03 and No. P41 RR02594-21
    corecore