28 research outputs found

    Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells.

    Get PDF
    Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery

    Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin

    No full text
    International audienceAdipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPARγ activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPARγ targets, confirming the involvement of PPARγ pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drug

    Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells

    No full text
    International audienceAdipocyte dysfunction is strongly associated with the development of cardiovascular risk factors and diabetes. It is accepted that the regulation of adipogenesis or adipokines expression, notably adiponectin, is able to prevent these disorders. In this report, we show that phloretin, a dietary flavonoid, enhances 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation and GPDH activity. At a molecular level, mRNA expression levels of both PPARγ and C/EBPα, the master adipogenic transcription factors, are markedly increased by phloretin. Moreover, mRNA levels of PPARγ target genes such as LPL, aP2, CD36 and LXRα are up-regulated by phloretin. We also show that phloretin enhances the expression and secretion of adiponectin. Co-transfection studies suggest the induction of PPARγ transcriptional activity as a possible mechanism underlying the phloretin-mediated effects. Taken together, these results suggest that phloretin may be beneficial for reducing insulin resistance through its potency to regulate adipocyte differentiation and functio

    Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes

    No full text
    International audienceEpidemiological studies have suggested that lycopene has protective effects against various diseases including cardiovascular diseases. However, mechanistic studies to understand these effects are difficult due to the insolubility of lycopene in aqueous culture medium. The objective of the present study was to use LDL or BSA as physiological vehicles for lycopene and to compare them with various classical vehicles. Among tested vehicles, only LDL, BSA, THF/BHT, beadlets, and liposomes were able to solubilise lycopene. No cytotoxicity was observed with these vehicles. LDL and BSA allowed good stability of lycopene during incubation (52% and 43% for 2microM lycopene solutions), but remained less efficient than THF/BHT or beadlets (67% and 62%). Incubation of adipocytes (3T3-L1) with the different vehicles for 24 and 48h showed that beadlets best delivered lycopene to cells. Finally, whatever the vehicle used, intracellular localization of lycopene was the same: lipid droplets (32-51%), plasma membrane (32-37%) and nuclear membrane (19-29%). As a conclusion, LDL or BSA display comparable properties to THF/BHT or beadlets. It is the first time that lycopene carried by physiological vehicles is shown to reach different subcellular compartments supporting molecular effects in adipocyte, such as cell signaling or nuclear receptor interacting

    Adiponectin expression is induced by vitamin E via a peroxisome proliferator-activated receptor gamma-dependent mechanism

    No full text
    International audienceAdiponectin is a well-known adipokine secreted by adipocytes that presents insulin-sensitizing properties. The regulation of expression of this adipokine by micronutrients is largely unknown. We demonstrate here that adiponectin expression is induced in adipocytes after exposure to tocopherols via the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) pathway. Vitamin E force feeding resulted in an induction of adiponectin in mice at both mRNA and protein levels. Adiponectin mRNA and protein secretion were also increased by vitamin E ({alpha}- and {gamma}-tocopherol) in 3T3-L1 cells, together with PPAR{gamma} mRNA, independent of an antioxidant effect. In transient transfections, both {alpha}- and {gamma}-vitamers induced the luciferase gene reporter under the control of a human adiponectin promoter via a PPAR-responsive element. The induction of adiponectin by tocopherols seems to be PPAR{gamma} dependent, because it was blocked by the specific antagonist GW9662. Finally, we showed that intracellular concentrations of a PPAR{gamma} endogenous ligand, 15-deoxy-{Delta}12,14-prostaglandin J2, increased after treatment with tocopherols in 3T3-L1 cells. In summary, vitamin E up-regulates adiponectin expression via a mechanism that implicates PPAR{gamma} together with its endogenous ligand 15-deoxy-{Delta}12,14-prostaglandin J2. The induction of adiponectin via an original molecular mechanism could be considered as the basis for the beneficial effect of vitamin E on insulin sensitivit

    Isolation and molecular characterization of LVP1 lipolysis activating peptide from scorpion Buthus occitanus tunetanus.

    No full text
    International audienceLVP1, a novel protein inducing lipolytic response in adipose cells, was purified from scorpion Buthus occitanus tunetanus venom. It represented 1% of crude venom proteins, with pHi approximately 6 and molecular mass of 16170 Da. In contrast to well-characterized scorpion toxins, reduction and alkylation of LVP1 revealed an heterodimeric structure. Isolated alpha and beta chains of LVP1 have a respective molecular mass of 8877 and 8807 Da as determined by mass spectrometry. The N-terminal and some internal peptide sequences of LVP1alpha and beta were determined by Edman degradation. The full amino acid sequences of both chains were deduced from nucleotide sequences of the corresponding cDNAs prepared based on peptide sequences and the 3' and 5' RACE methodologies. LVP1alpha and beta cDNAs encode a signal peptide of 22 residues and a mature peptide of 69 and 73 residues, respectively. Each mature peptide contains seven cysteines, which are compatible with an interchain disulfide bridge. The cDNA deduced protein structures share a high similarity with those of some Na+ channel scorpion toxins. LVP1 was not toxic to mice after intracerebro-ventricular injection. LVP1 stimulated lipolysis on freshly dissociated rat adipocytes in a dose-dependent manner with EC50 of approximately 1+0.5 microg/ml. LVP1 subunits did not display any lipolytic activity. As previously described for venom, beta adrenergic receptor (beta AR) antagonists interfere with LVP1 activity. Furthermore, it is shown that LVP1 competes with [3H]-CGP 12177 (beta1/beta2 antagonist) for binding to adipocyte plasma membrane with an IC50 of about 10(-7) M. These results demonstrate the existence of a new type of scorpion venom nontoxic peptides that are structurally related to Na+ channel toxins but can exert a distinct biological activity on adipocyte lipolysis through a beta-type adrenoreceptor pathway

    Adiponectin expression is induced by vitamin E via a peroxisome proliferator-activated receptor gamma-dependent mechanism

    No full text
    International audienceAdiponectin is a well-known adipokine secreted by adipocytes that presents insulin-sensitizing properties. The regulation of expression of this adipokine by micronutrients is largely unknown. We demonstrate here that adiponectin expression is induced in adipocytes after exposure to tocopherols via the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) pathway. Vitamin E force feeding resulted in an induction of adiponectin in mice at both mRNA and protein levels. Adiponectin mRNA and protein secretion were also increased by vitamin E ({alpha}- and {gamma}-tocopherol) in 3T3-L1 cells, together with PPAR{gamma} mRNA, independent of an antioxidant effect. In transient transfections, both {alpha}- and {gamma}-vitamers induced the luciferase gene reporter under the control of a human adiponectin promoter via a PPAR-responsive element. The induction of adiponectin by tocopherols seems to be PPAR{gamma} dependent, because it was blocked by the specific antagonist GW9662. Finally, we showed that intracellular concentrations of a PPAR{gamma} endogenous ligand, 15-deoxy-{Delta}12,14-prostaglandin J2, increased after treatment with tocopherols in 3T3-L1 cells. In summary, vitamin E up-regulates adiponectin expression via a mechanism that implicates PPAR{gamma} together with its endogenous ligand 15-deoxy-{Delta}12,14-prostaglandin J2. The induction of adiponectin via an original molecular mechanism could be considered as the basis for the beneficial effect of vitamin E on insulin sensitivit

    CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures

    No full text
    International audienceScope: Carotenoids are mainly stored in adipose tissue. However, nothing is known regarding the uptake of carotenoids by adipocytes. Thus, our study explored the mechanism by which lycopene and lutein, two major human plasma carotenoids, are transported. Methods and results: CD36 was a putative candidate for this uptake, 3T3-L1 cells were treated with sulfosuccinimidyl oleate, a CD36-specific inhibitor. sulfosuccinimidyl oleate-treated cells showed a significant decrease in both lycopene and lutein uptake as compared to control cells. Their uptake was also decreased by partial inhibition of CD36 expression using siRNA, whereas the overexpression of CD36 in Cos-1 cells increased their uptake. Finally, the effect of CD36 on carotenoid uptake was confirmed ex vivo in cultures of adipose tissue explants from CD36−/− mice, which exhibited reduced carotenoid uptake as compared to wild-type mice explants. Conclusion: For the first time, we report the involvement of a transporter, CD36, in carotenoid uptake by adipocytes and adipose tissu
    corecore