44 research outputs found

    Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus

    Get PDF
    Objective: To assess factors associated with primary and secondary non-response to rituximab in systemic lupus erythematosus (SLE) and evaluate management of secondary non-depletion non-response (2NDNR). Methods: 125 patients with SLE treated with rituximab over 12 years were studied prospectively. A major clinical response was defined as improvement of all active British Isles Lupus Assessment Group (BILAG)-2004 domains to grade C/better and no A/B flare. Partial responders were defined by one persistent BILAG B. B-cell subsets were measured using highly sensitive flow cytometry. Patients with 2NDNR, defined by infusion reaction and defective depletion, were treated with ocrelizumab or ofatumumab. Results: 117 patients had evaluable data. In cycle 1 (C1), 96/117 (82%) achieved BILAG response (major=50%, partial=32%). In multivariable analysis, younger age (OR 0.97, 95% CI 0.94 to 1.00) and B-cell depletion at 6 weeks (OR 3.22, 95% CI 1.24 to 8.33) increased the odds of major response. Complete depletion was predicted by normal complement and lower pre-rituximab plasmablasts and was not associated with increased serious infection post-rituximab. Seventy-seven (with data on 72) C1 responders were retreated on clinical relapse. Of these, 61/72 (85%) responded in cycle 2 (C2). Of the 11 C2 non-responders, nine met 2NDNR criteria (incidence=12%) and tested positive for anti-rituximab antibodies. Lack of concomitant immunosuppressant and higher pre-rituximab plasmablasts predicted 2NDNR. Five were switched to ocrelizumab/ofatumumab, and all depleted and responded. Conclusion: Treatment with anti-CD20 agents can be guided by B-cell monitoring and should aim to achieve complete depletion. 2NDNR is associated with anti-rituximab antibodies, and switching to humanised agents restores depletion and response. In SLE, alternative anti-CD20 antibodies may be more consistently effective

    Publisher Correction: A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity

    Get PDF
    Background Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Methods A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression. Findings In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12–2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09–3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC. Interpretation FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols. Funding Medical Research Council, National Institute for Health and Care Research, Versus Arthritis

    Defective proliferation and osteogenic potential with altered immunoregulatory phenotype of native bone marrow-multipotential stromal cells in atrophic fracture non-union

    Get PDF
    Bone marrow-Multipotential stromal cells (BM-MSCs) are increasingly used to treat complicated fracture healing e.g., non-union. Though, the quality of these autologous cells is not well characterized. We aimed to evaluate bone healing-related capacities of non-union BM-MSCs. Iliac crest-BM was aspirated from long-bone fracture patients with normal healing (U) or non-united (NU). Uncultured (native) CD271highCD45low cells or passage-zero cultured BM-MSCs were analyzed for gene expression levels, and functional assays were conducted using culture-expanded BM-MSCs. Blood samples were analyzed for serum cytokine levels. Uncultured NU-CD271highCD45low cells significantly expressed fewer transcripts of growth factor receptors, EGFR, FGFR1, and FGRF2 than U cells. Significant fewer transcripts of alkaline phosphatase (ALPL), osteocalcin (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were detected in NU-CD271highCD45low cells. Additionally, immunoregulation-related markers were differentially expressed between NU- and U-CD271highCD45low cells. Interestingly, passage-zero NU BM-MSCs showed low expression of immunosuppressive mediators. However, culture-expanded NU and U BM-MSCs exhibited comparable proliferation, osteogenesis, and immunosuppression. Serum cytokine levels were found similar for NU and U groups. Collectively, native NU-BM-MSCs seemed to have low proliferative and osteogenic capacities; therefore, enhancing their quality should be considered for regenerative therapies. Further research on distorted immunoregulatory molecules expression in BM-MSCs could potentially benefit the prediction of complicated fracture healing
    corecore