113 research outputs found

    Insertion of a foldable hydrophobic IOL through the trabeculectomy fistula in cases with Microincision cataract surgery combined with trabeculectomy

    Get PDF
    BACKGROUND: The use of conventional foldable hydrophobic intraocular lenses (IOLs) in microincision cataract surgery (MICS) currently requires wound enlargement. We describe a combined surgical technique of MICS and trabeculectomy with insertion of a foldable IOL through the trabeculectomy fistula. METHODS: After completion of MICS through two side port incisions, a 3.2 mm keratome is used to enter the anterior chamber under the previously outlined scleral flap. An Acrysof multi piece IOL (Alcon labs, Fort Worth, Tx) is inserted into the capsular bag through this incision. The scleral flap is then elevated and a 2 × 2 mm fistula made with a Kelly's punch. The scleral flap and conjunctival closure is performed as usual. RESULTS: Five patients with primary open angle glaucoma with a visually significant cataract underwent the above mentioned procedure. An IOL was implated in the capsular bag in all cases with no intraperative complications. After surgery, all patients obtained a best corrected visual acuity of 20/20, IOL was well centered at 4 weeks follow up. The mean IOP (without any antiglaucoma medication) was 13.2 + 2.4 mm Hg at 12 weeks with a well formed diffuse filtering bleb in all the cases. CONCLUSION: The technique of combining MICS with trabeculectomy and insertion of a foldable IOL through the trabeculectomy fistula is a feasible and valuable technique for cases which require combined cataract and glaucoma surgery

    Risk Factors for Tube Shunt Exposure: A Matched Case-Control Study

    Get PDF
    Purpose. To evaluate potential risk factors for developing tube shunt exposure in glaucoma patients. Patients and Methods. Forty-one cases from 41 patients that had tube shunt exposure from 1996 to 2005 were identified from the Robert Cizik Eye Clinic and Bascom Palmer Eye Institute. Each case was matched with 2 controls of the same gender and with tube shunts implanted within 6 months of the index case. Conditional logistic regression was used to determine risk factors. Results. The study cohort includes a total of 121 eyes from 121 patients. The mean age was 63.6 ± 19.7 years, ranging from 1 to 96 years. The average time to exposure was 19.29 ± 23.75 months (range 0.36–85.74 months). Risk factors associated with tube exposure were Hispanic ethnicity (; OR = 3.6; 95% CI, 1.3–9.7), neovascular glaucoma (; OR = 28.5; 95% CI, 2.6–316.9), previous trabeculectomy (; OR = 5.3; 95% CI, 1.6–17.7), and combined surgery (; OR = 3.7; 95% CI, 1.1–12.7). Conclusions. Hispanic ethnicity, neovascular glaucoma, previous trabeculectomy, and combined surgery were identified as potential risk factors for tube shunt exposure. These potential risk factors should be considered when determining the indication for performing tube shunt implantation and the frequency of long-term followup

    Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems

    Get PDF
    The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of  80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    A Phytochemical Study of Some Cassia Species Cultivated in Egypt

    No full text

    Potential antibacterial, antibiofilm, and photocatalytic performance of gamma-irradiated novel nanocomposite for enhanced disinfection applications with an investigated reaction mechanism

    No full text
    Abstract Background Water scarcity is now a global challenge due to the population growth and the limited amount of available potable water. In addition, modern industrialization, and microbial pathogenesis is resulting in water pollution on a large scale. Methods In the present study, reusable Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was incorporated with CdS NPs to develop an efficient photocatalyst, and antimicrobial agents for wastewater treatment, and disinfection purpose. The antibacterial performance of the gamma-irradiated samples was evaluated against various types of Gram-positive bacteria using ZOI, MIC, antibiofilm, and effect of UV-exposure. Antibacterial reaction mechanism was assessed by bacterial membrane leakage assay, and SEM imaging. In addition, their photocatalytic efficiency was tested against MB cationic dye as a typical water organic pollutant. Results Our results showed that, the formed CdS NPs were uniformly distributed onto the surface of the nanocomposite matrix. While, the resulted CdS-based nanocomposite possessed an average particle size of nearly 90.6 nm. The antibacterial performance of the prepared nanocomposite was significantly increased after activation with gamma and UV irradiations. The improved antibacterial performance was mainly due to the synergistic effect of both TiO2 and CdS NPs; whereas, the highest photocatalytic efficiency of MB removal was exhibited in alkaline media due to the electrostatic attraction between the cationic MB and the negatively-charged samples. In addition, the constructed heterojunction enabled better charge separation and increased the lifetime of the photogenerated charge carriers. Conclusion Our results can pave the way towards the development of efficient photocatalysts for wastewater treatment and promising antibacterial agents for disinfection applications
    corecore