4 research outputs found

    Evaluation of chamomile oil and nanoemulgels as a promising treatment option for atopic dermatitis induced in rats

    No full text
    Background: Atopic dermatitis is a chronic inflammatory skin disease that remarkably affects the quality-of-life of patients. Chamomile oil is used to treat skin inflammations. We evaluated the efficacy of chamomile oil and nanoemulgel formulations as a natural alternative therapeutic option for atopic dermatitis. Research design and methods: Formulations were developed comprising chamomile oil: olive oil (1:1), Tween 20/80 or Gelucire 44/14 as surfactant-cosurfactant mixtures, propylene glycol (10%w/w), water and hydroxypropyl methylcellulose (3%w/w). In-vitro physicochemical characterization, stability testing and in-vivo assessment of inflammatory biomarkers and histopathological examination of skin lesions were conducted in rats induced with atopic dermatitis. Results: Nanoemulgels G1 and X1 which displayed the smallest particle size of 137.5 ± 2.04 and 207.1 ± 5.44 nm, good homogeneity and high zeta-potential values of –26.4 and –32.7 mV were selected as the optimized emulgel. Nanoemulgels were nonirritating of pH value 5.56, readily spreadable, and were physically stable following 10 heating-cooling cycles. Treatment with nanoemulgels showed a two-fold decrease in duration of skin healing and no spongiosis compared to chamomile oil. Levels of biomarkers were reduced after topical application of both nanoemulgels and chamomile oil. Conclusion: Nanoemulgels are a potential cost effective, safe topical carrier system for chamomile in treating atopic dermatitis

    Propolis-loaded nanostructured lipid carriers halt breast cancer progression through miRNA-223 related pathways: an in-vitro/in-vivo experiment

    No full text
    Abstract The most frequent malignant tumor in women is breast cancer, and its incidence has been rising every year. Propolis has been used for its antibacterial, antifungal, and anti-inflammatory properties. The present study aimed to examine the effect of the Egyptian Propolis Extract (ProE) and its improved targeting using nanostructured lipid carriers (ProE-NLC) in Ehrlich Ascites Carcinoma (EAC) bearing mice, the common animal model for mammary tumors. EAC mice were treated either with 5-fluorouracil (5-FU), ProE, ProE-NLC, or a combination of ProE-NLC and 5-FU. Their effect on different inflammatory, angiogenic, proliferation and apoptotic markers, as well as miR-223, was examined. ProE and ProE-NLC have shown potential anti-breast cancer activity through multiple interrelated mechanisms including, the elevation of antioxidant levels, suppression of angiogenesis, inflammatory and mTOR pathways, and induction of the apoptotic pathway. All of which is a function of increased miRNA-223 expression. The efficiency of propolis was enhanced when loaded in nanostructured lipid carriers, increasing the effectiveness of the chemotherapeutic agent 5-FU. In conclusion, this study is the first to develop propolis-loaded NLC for breast cancer targeting and to recommend propolis as an antitumor agent against breast cancer or as an adjuvant treatment with chemotherapeutic agents to enhance their antitumor activity and decrease their side effects. Tumor targeting by ProE-NLC should be considered as a future therapeutic perspective in breast cancer

    Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges

    No full text
    Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from ‘paper to clinic’ and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management
    corecore