746 research outputs found

    Characterization of highly-oriented ferroelectric Pb_xBa_(1-x)TiO_3

    Get PDF
    Pb_xBa_(1-x)TiO_3 (0.2 ≾ x ≾ 1) thin films were deposited on single-crystal MgO as well as amorphous Si_3N_4/Si substrates using biaxially textured MgO buffer templates, grown by ion beam-assisted deposition (IBAD). The ferroelectric films were stoichiometric and highly oriented, with only (001) and (100) orientations evident in x-ray diffraction (XRD) scans. Films on biaxially textured templates had smaller grains (60 nm average) than those deposited on single-crystal MgO (300 nm average). Electron backscatter diffraction (EBSD) has been used to study the microtexture on both types of substrates and the results were consistent with x-ray pole figures and transmission electron microscopy (TEM) micrographs that indicated the presence of 90° domain boundaries, twins, in films deposited on single-crystal MgO substrates. In contrast, films on biaxially textured substrates consisted of small single-domain grains that were either c or a oriented. The surface-sensitive EBSD technique was used to measure the tetragonal tilt angle as well as in-plane and out-of-plane texture. High-temperature x-ray diffraction (HTXRD) of films with 90° domain walls indicated large changes, as much as 60%, in the c and a domain fractions with temperature, while such changes were not observed for Pb_xBa_(1-x)TiO_3 (PBT) films on biaxially textured MgO/Si_3N_4/Si substrates, which lacked 90° domain boundaries

    Graded ferroelectric capacitors with robust temperature characteristics

    Get PDF
    Ferroelectric thin films offer the possibility of engineering the dielectric response for tunable components in frequency-agile rf and microwave devices. However, this approach often leads to an undesired temperature sensitivity. Compositionally graded ferroelectric films have been explored as a means of redressing this sensitivity, but experimental observations vary depending on geometry and other details. In this paper, we present a continuum model to calculate the capacitive response of graded ferroelectric films with realistic electrode geometries by accurately accounting for the polarization distribution and long-range electrostatic interactions. We show that graded c-axis poled BaxSr_(1−xT)iO_3 BST parallel plate capacitors are ineffective while graded a-axis poled BST coplanar capacitors with interdigitated electrodes are extremely effective in obtaining high and temperature-stable dielectric properties

    Physiological factors affecting the production of an antimicrobial substance by Streptomyces violatus in batch cultures

    Get PDF
    Egyptian Journal of Biology Vol.3 2001: 1-1

    Utilization of Agricultural Waste in Treating Water Pollutants

    Get PDF
    This study investigated the applicability of chemically (phosphoric acid) activated bagasse pith and date pits in the adsorption of water pollutants. The textural properties including porous parameters, monolayer equivalent surface area, total pore volumes, average pore radius, Methylene blue number and other physic-chemical characterization were investigated. The activated carbons were analyzed for moisture content, ash content. Ultimate analysis was done by using CHNS analyzer (Cairo University, Micro-analytical Center). To investigate the effect of phosphoric acid on the raw material, thermo gravimetric analysis (TGA) and differential thermo gravimetric (DTG) recordings were determined. The adsorption of heavy metals as pollutants, including Co, Sr, Cu, Cs, Pb, Cd, Ni, Fe, Zn, was studied in a batch experiments. Comparison of date pits activated carbon with commercial activated carbon was done, and the results indicated that using of prepared activated carbon for removal of Co, Sr, Cu, Cs, Pb, Cd, Ni,  Fe, Zn was  more effective than commercial activated carbon

    Speciation of vanadium in the dissolved, colloidal, and sediment phase under dynamic redox-conditions in a V contaminated soil treated and untreated with biochar

    Get PDF
    Vanadium is a redox-sensitive toxic element and can exist in a variety of oxidation states: −1, 0, +2, +3, +4, and +5. Vanadium (+5) is considered as a potentially dangerous pollutant. Biochar (BC) can be used to remediate soils contaminated with potential toxic elements (PTEs) including V. However, the efficiency of BC to immobilize V and its on speciation of V in the dissolved and colloidal phase and its mobilization and phytoavailability in the sediment phase under dynamic redox-conditions in highly contaminated soils under dynamic redox conditions has not been studied up to date. Thus, we have i) quantified the impact of pre-definite redox conditions on the speciation and release dynamics of V in the dissolved and colloidal phase as well as on the mobilization and phytoavailability of V in the soil sediments phase in a highly contaminated alkaline soil (CS) (non-treated) (pH = 7.44 and total V = 1,040 mg kg-1) collected from China and in the same soil treated with BC (CS+BC), and ii) assessed the impact of rice husk biochar as soil amendment on the same parameters. The impact of redox potential (EH), pH, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), iron (Fe), manganese (Mn), and sulfate (SO42-) on speciation and release dynamics of V was also determined under dynamic redox conditions. In addition, the used biochar was characterized using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) and nuclear magnetic resonance spectroscopy (NMR). The experiment was conducted in stepwise from moderate reducing (-30 mV in CS and -12 mV in CS+BC) to oxidizing (+218 mV in CS and +333 mV in CS+BC) soil conditions in different cycles using a highly sophisticated automated biogeochemical microcosm apparatus. Flooding of the CS and CS+BC caused significant changes of pH values which varied from 6.15 to 8.33 in the CS and from 5.14 to 7.91 in the CS+BC and the EH correlated negatively with pH. The dissolved concentrations of V varied from 15.2-46.4 mg L-1 in the CS to 14.9-50.2 mg L-1 in the CS+BC, while the colloidal concentrations of V varied from 39.5-49.9 mg L-1 in the CS to 31.8-50.2 mg L-1 in the CS+BC. Different redox cycles affected significantly the speciation and release dynamics of V in the dissolved and colloidal phase and its mobilization and phytoavailability in the sediment phase

    Biogenic Control of Manganese Doping in Zinc Sulfide Nanomaterial Using Shewanella oneidensis MR-1

    Get PDF
    Bacteria naturally alter the redox state of many compounds and perform atom-by-atom nanomaterial synthesis to create many inorganic materials. Recent advancements in synthetic biology have spurred interest in using biological systems to manufacture nanomaterials, implementing biological strategies to specify the nanomaterial characteristics such as size, shape, and optical properties. Here, we combine the natural synthetic capabilities of microbes with engineered genetic control circuits toward biogenically synthesized semiconductor nanomaterials. Using an engineered strain of Shewanella oneindensis with inducible expression of the cytochrome complex MtrCAB, we control the reduction of manganese (IV) oxide. Cytochrome expression levels were regulated using an inducer molecule, which enabled precise modulation of dopant incorporation into manganese doped zinc sulfide nanoparticles (Mn:ZnS). Thereby, a synthetic gene circuit controlled the optical properties of biogenic quantum dots. These biogenically assembled nanomaterials have similar physical and optoelectronic properties to chemically synthesized particles. Our results demonstrate the promise of implementing synthetic gene circuits for tunable control of nanomaterials made by biological systems
    • …
    corecore