26 research outputs found

    Occurrence and sources of aliphatic hydrocarbons in surface soils from Riyadh city, Saudi Arabia

    Get PDF
    AbstractSoil particles contain a variety of anthropogenic and natural organic components derived from many sources such as industrial and traffic fossil fuel emissions and terrestrial biota. The organic contents of soil and sand from the Arabian region have not fully characterized. Thus, samples of fine soil particles (sieved to <125μM) were collected from the Riyadh area in November 2006 (late summer) and February 2007 (late winter). The samples were extracted with a mixture of dichloromethane/hexane and analyzed by gas chromatography–mass spectroscopy (GCMS) in order to characterize the chemical composition and sources of aliphatic hydrocarbons. The results showed that both anthropogenic and natural biogenic inputs were the major sources of the aliphatic hydrocarbons in these extracts. Vehicular emission products and discarded plastics were the major anthropogenic sources in the fine particles of the soils and ranged from 64% to 96% in November 2006 and from 70% to 92% in February 2007. Their tracers were n-alkanes, hopanes, sterane, plasticizers and UCM. Vegetation was also a major natural source of hydrocarbon compounds in samples ranging from ∼0% to18% in November 2006 and from 1% to 13% in February 2007 and included n-alkanes and triterpenoids

    Organic acid blend supplementation increases butyrate and acetate production in  Salmonella enterica serovar Typhimurium challenged broilers.

    No full text
    The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities

    Levels, Sources, and Risk Assessment of Polychlorinated Biphenyls (PCBs) in Soils from Industrial Areas: A Case Study from Saudi Arabia

    No full text
    <p>The objective of this study was to assess the pollution levels, sources, and human health risk of polychlorinated biphenyls (PCBs) in soils of industrial areas of the central and eastern regions of Saudi Arabia. Therefore, the surface soil samples from industrial areas (cement kiln, oil refinery, electric power plant, steel industry, and desalination plant) were collected and analyzed by High-Resolution Gas Chromatography-Mass Spectrometry/Mass Spectrometry-Time of Flight (HRGC-MS/MS-TOF) to quantify the levels of 26 PCBs (including 12 dioxin-like PCBs and 14 indicator-PCBs). The investigated 26 PCBs were detected in all soil samples. The total PCBs concentration (from tri-CBs to hepta-CBs) ranged from 171 to 4892 pg g<sup>−1</sup> with an average of 1369 pg g<sup>−1</sup> in soils of the central region and of 142–1231 pg g<sup>−1</sup> with an average of 302 in soils of the eastern region, showing higher values at cement factory and/or oil refinery sites. Overall, the indicator-PCBs were the main congeners and contributed dominantly to the total mass of PCBs in comparison with the dioxin-like PCB congeners, with the most abundant for PCB-180 in the soil samples of the central region. Among individual dioxin-like PCBs, PCB-126 had the highest average value of the toxicity equivalence (TEQ). The TEQ values of ∑12dioxin-like PCBs did not exceed the Canadian soil quality guidelines of dioxin (4 pg TEQ g<sup>−1</sup>). Based on human health risk assessment via ingestion, dermal contact, and inhalation, low adverse effects of PCBs could be expected as indicated by lower values of cancer risk (≤10<sup>−6</sup>). The principal component analysis indicated that there is a different source of PCBs with similar or different PCB profiles.</p

    Characteristics and sources of anthropogenic and biogenic hydrocarbons in sediments from the coast of Qatar.

    No full text
    Surface sediment samples from the coastal zone of Qatar were collected and analyzed to determine the characteristics, and sources of anthropogenic and biogenic hydrocarbons. The main compounds in these surface sediments included n-alkanes, methyl n-alkanoates, diterpenoids, hopanes, steranes, phthalate esters, polycyclic aromatic hydrocarbons (PAHs) and unresolved complex mixture (UCM). Their total concentrations ranged from 18.7±3.7-81.1±7.5ng/g (3.7±0.6-10.4±4.8%) for n-alkanes, 8.3±2.3-51±3.4ng/g (3.0±2.0-5.6±2.0%) for methyl n-alkanoates, 1.8±0.1-10.5±1.0ng/g (1.0±0.5-0.4±0.1%) for diterpenoids, 0.0-79.3±7.4ng/g (0.0-7.9±0.6%) for hopanes, 0.0-32.9±7.9ng/g (0.0-6.5±1.0%) for steranes, 0.7±0.1-36.3±3.4ng/g (0.1±0.1-1.9±3.4%) for phthalates, 0.30±0.2-7.8±0.7ng/g (0.02±0.04-0.42±0.72%) for PAHs, and 38±9-609±57ng/g (38.5±13.4-56.5±13.4%) for UCM. The major sources of these lipids were anthropogenic petroleum residues and plasticizers (80-89%), with lesser amounts from natural higher plants and microbial residues (11-20%). Petroleum residues and plasticizer inputs to the coastal sediments of Qatar likely affect the marine ecosystems and associated species groups as well as shallow coastal nursery and spawning areas
    corecore