33 research outputs found

    A PDE Method to Segment Image Linear Objects with Application to Lens Distortion Removal

    Get PDF
    In this paper, we propose a partial differential equation based method to segment image objects, which have a given parametric shape based on energy functional. The energy functional is composed of a term that detects object boundaries and a term that constrains the contour to find a shape compatible with the parametric shape. While the shape constraints guiding the PDE may be determined from object's shape statistical models, we demonstrate the proposed approach on the extraction of objects with explicit shape parameterization, such as linear image segments. Several experiments are reported on synthetic and real images to evaluate our approach. We also demonstrate the successful application of the proposed method to the problem of removing camera lens distortion, which can be significant in medium to wide-angle lenses

    COVID-19 and myocarditis: a brief review

    Get PDF
    Cardiovascular complications (especially myocarditis) related to COVID-19 viral infection are not well understood, nor do they possess a well recognized diagnostic protocol as most of our information regarding this issue was derived from case reports. In this article we extract data from all published case reports in the second half of 2020 to summarize the theories of pathogenesis and explore the value of each diagnostic test including clinical, lab, ECG, ECHO, cardiac MRI and endomyocardial biopsy. These tests provide information that explain the mechanism of development of myocarditis that further paves the way for better management

    The Role of 3D CT Imaging in the Accurate Diagnosis of Lung Function in Coronavirus Patients

    Get PDF
    Early grading of coronavirus disease 2019 (COVID-19), as well as ventilator support machines, are prime ways to help the world fight this virus and reduce the mortality rate. To reduce the burden on physicians, we developed an automatic Computer-Aided Diagnostic (CAD) system to grade COVID-19 from Computed Tomography (CT) images. This system segments the lung region from chest CT scans using an unsupervised approach based on an appearance model, followed by 3D rotation invariant Markov–Gibbs Random Field (MGRF)-based morphological constraints. This system analyzes the segmented lung and generates precise, analytical imaging markers by estimating the MGRF-based analytical potentials. Three Gibbs energy markers were extracted from each CT scan by tuning the MGRF parameters on each lesion separately. The latter were healthy/mild, moderate, and severe lesions. To represent these markers more reliably, a Cumulative Distribution Function (CDF) was generated, then statistical markers were extracted from it, namely, 10th through 90th CDF percentiles with 10% increments. Subsequently, the three extracted markers were combined together and fed into a backpropagation neural network to make the diagnosis. The developed system was assessed on 76 COVID-19-infected patients using two metrics, namely, accuracy and Kappa. In this paper, the proposed system was trained and tested by three approaches. In the first approach, the MGRF model was trained and tested on the lungs. This approach achieved 95.83% accuracy and 93.39% kappa. In the second approach, we trained the MGRF model on the lesions and tested it on the lungs. This approach achieved 91.67% accuracy and 86.67% kappa. Finally, we trained and tested the MGRF model on lesions. It achieved 100% accuracy and 100% kappa. The results reported in this paper show the ability of the developed system to accurately grade COVID-19 lesions compared to other machine learning classifiers, such as k-Nearest Neighbor (KNN), decision tree, naïve Bayes, and random forest

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    A PDE Method to Segment Image Linear Objects with Application to Lens Distortion Removal

    No full text
    In this paper, we propose a partial differential equation based method to segment image objects, which have a given parametric shape based on energy functional. The energy functional is composed of a term that detects object boundaries and a term that constrains the contour to find a shape compatible with the parametric shape. While the shape constraints guiding the PDE may be determined from object's shape statistical models, we demonstrate the proposed approach on the extraction of objects with explicit shape parameterization, such as linear image segments. Several experiments are reported on synthetic and real images to evaluate our approach. We also demonstrate the successful application of the proposed method to the problem of removing camera lens distortion, which can be significant in medium to wide-angle lenses

    Electronic Letters on Computer Vision and Image Analysis 6(2):9-21, 2007 A PDE Method to Segment Image Linear Objects with Application to Lens Distortion Removal

    No full text
    In this paper, we propose a partial differential equation based method to segment image objects, which have a given parametric shape based on energy functional. The energy functional is composed of a term that detects object boundaries and a term that constrains the contour to find a shape compatible with the parametric shape. While the shape constraints guiding the PDE may be determined from object's shape statistical models, we demonstrate the proposed approach on the extraction of objects with explicit shape parameterization, such as linear image segments. Several experiments are reported on synthetic and real images to evaluate our approach. We also demonstrate the successful application of the proposed method to the problem of removing camera lens distortion, which can be significant in medium to wide-angle lenses

    Variational Approach for Joint Kidney Segmentation and Registration from DCE-MRI Using Fuzzy Clustering with Shape Priors

    No full text
    The dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique has great potential in the diagnosis, therapy, and follow-up of patients with chronic kidney disease (CKD). Towards that end, precise kidney segmentation from DCE-MRI data becomes a prerequisite processing step. Exploiting the useful information about the kidney’s shape in this step mandates a registration operation beforehand to relate the shape model coordinates to those of the image to be segmented. Imprecise alignment of the shape model induces errors in the segmentation results. In this paper, we propose a new variational formulation to jointly segment and register DCE-MRI kidney images based on fuzzy c-means clustering embedded within a level-set (LSet) method. The image pixels’ fuzzy memberships and the spatial registration parameters are simultaneously updated in each evolution step to direct the LSet contour toward the target kidney. Results on real medical datasets of 45 subjects demonstrate the superior performance of the proposed approach, reporting a Dice similarity coefficient of 0.94 ± 0.03, Intersection-over-Union of 0.89 ± 0.05, and 2.2 ± 2.3 in 95-percentile of Hausdorff distance. Extensive experiments show that our approach outperforms several state-of-the-art LSet-based methods as well as two UNet-based deep neural models trained for the same task in terms of accuracy and consistency
    corecore