5 research outputs found

    Troubles du sommeil et de l’éveil dans la phase chronique d’un traumatisme craniocérébral modéré-sévère

    Full text link
    Le traumatisme craniocérébral (TCC) modéré à sévère constitue une cause majeure d’invalidité chez les jeunes adultes. Il entraine des séquelles physiologiques, comportementales, cognitives et affectives qui entravent le devenir fonctionnel et psychosocial des survivants. Les perturbations de la qualité du sommeil et de l’éveil figurent parmi les plaintes les plus fréquentes et persistantes à la suite d’un TCC modéré à sévère, mais on ignore si celles-ci sont associées à une atteinte de l’intégrité du sommeil. Cette question est primordiale puisque le sommeil est central pour maintenir les capacités d’éveil et un fonctionnement cognitif optimal, ce qui est d’autant plus essentiel lorsque le cerveau est lésé. Cette thèse vise ainsi à caractériser la nature et les corrélats des perturbations du sommeil et de l’éveil durant la phase chronique d’un TCC modéré à sévère. L’association entre les capacités d’apprentissage post-TCC et l’activité à ondes lentes, une caractéristique du sommeil lent connue pour jouer un rôle dans la plasticité synaptique et la mémoire, est également explorée. Pour ce faire, des mesures objectives (actigraphie, polysomnographie) et subjectives (agenda de sommeil et questionnaires) de sommeil-éveil ont été conduites chez des survivants d’un TCC modéré à sévère et des sujets contrôles en bonne santé. La sévérité du trauma, la présence de comorbidités (anxiété, dépression, douleur) et la prise de médicaments psychotropes ont aussi été documentées. La première étude a montré que comparativement aux contrôles, les personnes ayant subi un TCC modéré à sévère rapportent un niveau significativement plus élevé de difficultés d’endormissement, de mauvaise qualité de sommeil, de somnolence diurne et de fatigue. L’actigraphie enregistrée sur une semaine à domicile n’a en revanche pas montrée de perturbations de la qualité du sommeil nocturne. Au contraire, la durée de sommeil sur une période de 24h était significativement supérieure chez les participants TCC par rapport aux contrôles, et cela particulièrement dans un sous-groupe de participants TCC sous médication psychotrope et qui ont subi un trauma global plus sévère. La présence de comorbidités était par ailleurs associée aux plaintes de sommeil-éveil dans le groupe TCC. Dans la deuxième étude, l’architecture du sommeil telle que mesurée par la polysomnographie a été évaluée. Là encore, les résultats indiquent que malgré des plaintes significatives de sommeil-éveil chez le groupe TCC, la macro- et microarchitecture du sommeil étaient similaires chez ces derniers comparativement au groupe contrôle. Toutefois, une association a été montrée entre la qualité du sommeil et la cognition post-TCC, de sorte que plus i l’activité à ondes lentes est élevée au cours du sommeil lent, meilleures sont les performances d’apprentissage et de mémoire épisodique du lendemain. Cette association était plus forte à la suite de la survenue d’un TCC plus sévère par rapport à un TCC moins sévère, suggérant une plus forte dépendance des survivants ayant subi un TCC sévère à l’activité à ondes lentes au cours du sommeil pour apprendre de nouvelles informations. Cette thèse apporte de nouvelles évidences que le cerveau lésé à la suite d’un TCC modéré à sévère semble capable de produire une architecture de sommeil comparable à celle de sujets contrôles en santé. Les plaintes de sommeil-éveil persistantes à la suite d’un TCC modéré à sévère apparaissent influencées par d’autres facteurs, notamment la survenue d’un trauma plus complexe nécessitant une prise en charge pharmacologique, ainsi que des facteurs environnementaux et comorbides. En outre, cette thèse supporte le besoin d’explorer davantage le rôle du sommeil dans les capacités cognitives post-TCC.Moderate to severe traumatic brain injury (TBI) is a major cause of disability in young adults. It causes physiological, behavioral, cognitive and emotional sequelae that hinder functional and psychosocial outcomes. Disturbances in sleep quality and wakefulness are among the most common and persistent complaints in moderate to severe TBI survivors. However it is unclear if these complaints are associated with impaired sleep integrity. This question is crucial as sleep is central in wakefulness-promoting and optimal cognitive functioning, which is particularly essential when the brain is injured. This thesis aims to characterize the nature and correlates of sleep and wakefulness disturbances during the chronic phase of moderate to severe TBI. The association between post-TBI learning capacity and slow-wave activity, a sleep characteristic known to play a role in synaptic plasticity and memory, is also explored. To do this, objective (actigraphy, polysomnography) and subjective (sleep diary and questionnaires) sleep-wake measures were used in moderate to severe TBI survivors and healthy control subjects. The severity of the trauma, the presence of comorbidities (anxiety, depression, pain) and the use of psychotropic medications have also been documented. The first study showed that compared to controls, people with moderate to severe TBI reported significantly lower sleep quality, and higher levels of daytime sleepiness and fatigue. Yet, a seven-day actigraphy recording did not show any disturbances in the nighttime sleep efficiency. Rather, sleep duration over a 24h period was significantly increased in participants with TBI compared to controls, particularly in a subgroup of TBI who used psychotropic medications and suffered a more severe overall trauma. The presence of comorbidities was also associated with sleep-wake complaints in TBI group. In the second study, the sleep architecture as measured by polysomnography was evaluated. Again, the results indicated that despite significant sleep-wake complaints in TBI group, the macro- and micro-architecture of sleep measured in the TBI group were similar to those in the control group. However, an association between sleep quality and post-TBI cognition was shown, as higher slow-wave-activity sleep was associated with better memory performance the day after. This association was stronger following more severe TBI compared to milder TBI, suggesting that adults who sustained more severe TBI are more dependent on sleep slow-wave-activity for next- day memory function. iii This thesis brings new evidence that the injured brain following moderate to severe TBI appears to be able to produce sleep architecture comparable to healthy control subjects. Persistent sleep- wake complaints following moderate-to-severe TBI appear to be influenced by other factors, including the occurrence of more complex trauma requiring pharmacological management, as well as environmental and comorbid factors. In addition, this thesis supports the need to further explore the role of sleep in post-TBI cognitive abilities

    Brain white matter damage and its association with neuronal synchrony during sleep

    Full text link
    The restorative function of sleep partly relies on its ability to deeply synchronize cerebral networks to create large slow oscillations observable with EEG. However, whether a brain can properly synchronize and produce a restorative sleep when it undergoes massive and widespread white matter damage is unknown. Here, we answer this question by testing 23 patients with various levels of white matter damage secondary to moderate to severe traumatic brain injuries (ages 18–56; 17 males, six females, 11–39 months post-injury) and compared them to 27 healthy subjects of similar age and sex. We used MRI and diffusion tensor imaging metrics (e.g. fractional anisotropy as well as mean, axial and radial diffusivities) to characterize voxel-wise white matter damage. We measured the following slow wave characteristics for all slow waves detected in N2 and N3 sleep stages: peak-to-peak amplitude, negative-to-positive slope, negative and positive phase durations, oscillation frequency, and slow wave density. Correlation analyses were performed in traumatic brain injury and control participants separately, with age as a covariate. Contrary to our hypotheses, we found that greater white matter damage mainly over the frontal and temporal brain regions was strongly correlated with a pattern of higher neuronal synchrony characterized by slow waves of larger amplitudes and steeper negative-to-positive slopes during non-rapid eye movement sleep. The same pattern of associations with white matter damage was also observed with markers of high homeostatic sleep pressure. More specifically, higher white matter damage was associated with higher slow-wave activity power, as well as with more severe complaints of cognitive fatigue. These associations between white matter damage and sleep were found only in our traumatic brain injured participants, with no such correlation in controls. Our results suggest that, contrary to previous observations in healthy controls, white matter damage does not prevent the expected high cerebral synchrony during sleep. Moreover, our observations challenge the current line of hypotheses that white matter microstructure deterioration reduces cerebral synchrony during sleep. Our results showed that the relationship between white matter and the brain’s ability to synchronize during sleep is neither linear nor simple

    Sleep spindles are resilient to extensive white matter deterioration

    Full text link
    Sleep spindles are an essential part of non-rapid eye movement sleep, notably involved in sleep consolidation, cognition, learning and memory. These oscillatory waves depend on an interaction loop between the thalamus and the cortex, which relies on a structural backbone of thalamo-cortical white matter tracts. It is still largely unknown if the brain can properly produce sleep spindles when it underwent extensive white matter deterioration in these tracts, and we hypothesized that it would affect sleep spindle generation and morphology. We tested this hypothesis with chronic moderate to severe traumatic brain injury (n ÂĽ 23; 30.5 6 11.1 years old; 17 m/6f), a unique human model of extensive white matter deterioration, and a healthy control group (n ÂĽ 27; 30.3 6 13.4 years old; 21m/6f). Sleep spindles were analysed on a full night of polysomnography over the frontal, central and parietal brain regions, and we measured their density, morphology and sigma-band power. White matter deterioration was quantified using diffusion-weighted MRI, with which we performed both whole-brain voxel-wise analysis (Tract-Based Spatial Statistics) and probabilistic tractography (with High Angular Resolution Diffusion Imaging) to target the thalamo-cortical tracts. Group differences were assessed for all variables and correlations were performed separately in each group, corrected for age and multiple comparisons. Surprisingly, although extensive white matter damage across the brain including all thalamo-cortical tracts was evident in the brain-injured group, sleep spindles remained completely undisrupted when compared to a healthy control group. In addition, almost all sleep spindle characteristics were not associated with the degree of white matter deterioration in the braininjured group, except that more white matter deterioration correlated with lower spindle frequency over the frontal regions. This study highlights the resilience of sleep spindles to the deterioration of all white matter tracts critical to their existence, as they conserve normal density during non-rapid eye movement sleep with mostly unaltered morphology. We show that even with such a severe traumatic event, the brain has the ability to adapt or to withstand alterations in order to conserve normal sleep spindles
    corecore