108 research outputs found

    The Mineral Biochar Alters the Biochemical and Microbial Properties of the Soil and the Grain Yield of Hordeum vulgare L. under Drought Stress

    Get PDF
    Biochar improves soil physical, biochemical, and microbial properties, leading to the amelioration of soil fertility, which, in turn, results in better growth and yield in crop plants. The current study aimed to evaluate whether using different levels of biochar can enhance soil characteristics and plant attributes. Accordingly, an experimental study was conducted in 2022 using a randomized complete block design with four replications (n = 4) in the experimental glasshouse of the University of Zanjan, in which two regimes of irrigation (D0, full irrigation as the control; D1, water scarcity was applied immediately after the flowering stage for two weeks) and four levels of natural mineral biochar (0% as the control treatment, 0.25, 0.5, and 1% of soil weight) were applied. The results indicated that drought substantially decreased the organic carbon content of the soil and the grain yield while increasing the available phosphorous, soil carbohydrate content, and microbial biomass of the soil. Biochar could considerably alter the means of the studied soil quality parameters and the barley grain yield. Adding biochar could be considered a valid strategy to increase the resistance of plants to drought

    Invasive Mesquite (Prosopis juliflora), an allergy and health challenge

    Get PDF
    Mesquite (Prosopis juliflora (Sw.) DC), is an medium-sized tree (family Fabaceae, subfamily Mimosoideae), that has been intorcuded around the world. It is a noxious invasive species in Africa, Asia, and the Arabian Peninsula and a source of highly allergenic pollen in. The present article reviews the adverse allergenic effects of P. juliflora pollen on human and animal health. Several studies have diagnosed that allergenic pollens from Prosopis spp. can provoke respiratory problems. Prosopis pollen extracts have 16 allergenic components of which nine proteins were recognized as major allergens with some of them showing cross-reactivity. Clinically, understanding Prosopis pollen production, flowering seasonality, pollen load, and dispersal in the atmosphere are important to avoid allergic consequences for local inhabitants. Climate change and other pollution can also help to further facilitate allergenic issues. Furthermore, we document other human and animal health problems caused by invasive Prosopis trees. This includes flesh injuries, dental and gastric problems, and the facilitation of malaria. This review summarizes and enhances the existing knowledge about Prosopis flowering phenology, aeroallergen, and other human and animal health risks associated with this noxious plant

    Changes in the Invasion Rate of Prosopis juliflora and Its Impact on Depletion of Groundwater in the Northern Part of the United Arab Emirates

    Get PDF
    Prosopis species were introduced to the United Arab Emirates (UAE) region for desert greening. However, the species now pose a great threat to the native plant diversity. This study used high-resolution satellite imagery (1990–2019) to understand the history and current distribution of Prosopis species and their impact on fresh groundwater. The results show that the Prosopis invasion in the study area reached its maximum expansion rate in 2019 and covered an area of about 16 km2 compared to 0.2 km2 in 1990. The areas near Sharjah Airport, Umm Fannan, and Al Talla, located at a lower elevation of the sand dune area, are heavily invaded. Prosopis groundwater requirement derived using evapotranspiration shows that groundwater consumption has changed drastically after 2010 and consumed about 22.22 million m3 of groundwater in 2019, which is about a 7372% increase in groundwater consumption from the year 1990 to 2019. The results can be useful for setting up a management plan for the sustainable use of this species in the UAE region in particular and other similar countries in the arid land regions that are suffering from freshwater depletion because of Prosopis invasion

    Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress

    Get PDF
    Salinity is a global conundrum that negatively affects various biometrics of agricultural crops. Jasmonic acid (JA) is a phytohormone that reinforces multilayered defense strategies against abiotic stress, including salinity. This study investigated the effect of JA (60 μM) on two wheat cultivars, namely ZM9 and YM25, exposed to NaCl (14.50 dSm−1) during two consecutive growing seasons. Morphologically, plants primed with JA enhanced the vegetative growth and yield components. The improvement of growth by JA priming is associated with increased photosynthetic pigments, stomatal conductance, intercellular CO2, maximal photosystem II efficiency, and transpiration rate of the stressed plants. Furthermore, wheat cultivars primed with JA showed a reduction in the swelling of the chloroplast, recovery of the disintegrated thylakoids grana, and increased plastoglobuli numbers compared to saline-treated plants. JA prevented dehydration of leaves by increasing relative water content and water use efficiency via reducing water and osmotic potential using proline as an osmoticum. There was a reduction in sodium (Na+) and increased potassium (K+) contents, indicating a significant role of JA priming in ionic homeostasis, which was associated with induction of the transporters, viz., SOS1, NHX2, and HVP1. Exogenously applied JA mitigated the inhibitory effect of salt stress in plants by increasing the endogenous levels of cytokinins and indole acetic acid, and reducing the abscisic acid (ABA) contents. In addition, the oxidative stress caused by increasing hydrogen peroxide in salt-stressed plants was restrained by JA, which was associated with increased α-tocopherol, phenolics, and flavonoids levels and triggered the activities of superoxide dismutase and ascorbate peroxidase activity. This increase in phenolics and flavonoids could be explained by the induction of phenylalanine ammonia-lyase activity. The results suggest that JA plays a key role at the morphological, biochemical, and genetic levels of stressed and non-stressed wheat plants which is reflected in yield attributes. Hierarchical cluster analysis and principal component analyses showed that salt sensitivity was associated with the increments of Na+, hydrogen peroxide, and ABA contents. The regulatory role of JA under salinity stress was interlinked with increased JA level which consequentially improved ion transporting, osmoregulation, and antioxidant defense

    Application of potassium, zinc and boron as potential plant growth modulators in Gossypium hirsutum L. under heat stress

    Get PDF
    High temperature stress at reproductive stages of cotton crop severely affects the yield and quality of cotton crop under changing climatic conditions. To alleviate the adverse effects of high temperature stress on cotton crop, the regulatory effects of potassium (K), zinc (Zn), and boron (B) were assessed by applying different temperature regimes at three reproductive stages of cotton crop under field and glass house conditions. Cotton plants were subjected to low (32/20 °C ± 2), medium (38/24 °C ± 2), and high (45/30 °C ± 2) temperatures under glasshouse, but sown at specific dates in field to provide different temperatures at three reproductive stages. High-temperature stress at squaring, flowering and boll formation stages in both field studies increased relative cell injury (RCI), total soluble proteins (TSP), reactive oxygen species and reduced fiber yield attributes i.e. total number of bolls per plant (TNBPP), number of sympodial branches per plant (NSBPP) and quality traits. For example, RCI, TNBPP and fiber fineness were reduced by 73%, 42% and 29%, respectively under supra thermal regime (SupTR) of glass house study over the optimal thermal regime (OpTR). Foliar application of K and Zn followed by B increased TSP, RWC, TNBPP, NSBPP, fiber fineness, fiber length and fiber strength. Further, foliar spray of K and Zn followed by B also reduced H2 O2 under SupTR and SubTR over the OpTR. The findings of the present study clearly demonstrate that foliar spray of Zn, K and B alleviated adverse effects of high temperature stress at squaring, flowering and boll formation stages and increased seed cotton yield and quality of cotton crop. © TÜBİTAK

    The Promise of Molecular and Genomic Techniques for Biodiversity Research and DNA Barcoding of the Arabian Peninsula Flora

    Get PDF
    The Arabian Peninsula is known to have a comprehensive and rich endowment of unique and genetically diverse plant genetic resources. Analysis and conservation of biological diversity is a crucial issue to the whole Arabian Peninsula. The rapid and accurate delimitation and identification of a species is crucial to genetic diversity analysis and the first critical step in the assessment of distribution, population abundance and threats related to a particular target species. During the last two decades, classical strategies of evaluating genetic variability, such as morphology and physiology, have been greatly complemented by phylogenetic, taxonomic, genetic diversity and breeding research molecular studies. At present, initiatives are taking place around the world to generate DNA barcode libraries for vascular plant flora and to make these data available in order to better understand, conserve and utilize biodiversity. The number of herbarium collection-based plant evolutionary genetics and genomics studies being conducted has been increasing worldwide. The herbaria provide a rich resource of already preserved and identified material, and these as well as freshly collected samples from the wild can be used for creating a reference DNA barcode library for the vascular plant flora of a region. This review discusses the main molecular and genomic techniques used in plant identification and biodiversity analysis. Hence, we highlight studies emphasizing various molecular techniques undertaken during the last 10 years to study the plant biodiversity of the Arabian Peninsula. Special emphasis on the role of DNA barcoding as a powerful tool for plant biodiversity analysis is provided, along with the crucial role of herbaria in creating a DNA barcode library

    Effect of Population, Collection Year, After-Ripening and Incubation Condition on Seed Germination of \u3cem\u3eStipa bungeana\u3c/em\u3e

    Get PDF
    Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations in 2015 and 2016. Dormancy and germination characteristics of fresh and 6-month-old dry-stored seeds were determined by incubating them over a range of alternating temperature regimes in light. Effect of water stress on germination was tested for fresh and 6-month-old dry-stored seeds. Seed dormancy and germination of S. bungeana differed with population and collection year. Six months of dry storage broke seed dormancy, broadened the temperature range for germination and increased among-population differences in germination percentage. The rank order of germination was not consistent in all germination tests, and it varied among populations. Thus, studies on comparing seed dormancy and germination among populations must consider year of collection, seed dormancy states and germination test conditions when selecting seeds for grassland restoration and management

    Biology and Impacts of Pacific Island Invasive Species. 6. Prosopis pallida

    Full text link
    corecore