44 research outputs found
Petrology and Geochemistry of Ourika Gneissic Rocks (High-Atlas, Morocco): Implications for Provenance and Geotectonic Setting
Gneissic terranes under studied are one of the various formations constituting the Ourika Old massif. They underwent a metamorphic evolution characterized by a first amphibole facies event and a second greenschist facies metamorphism. The high-grade metamorphism is related to a Pan-African orogenesis that produced subduction-related granitoids preserved as GAA and GBA gneisses. These two gneissic groups have different geochemical compositions which were likely linked to the protolith nature. Petrology and geochemical investigations reveal that the protolith of GBA gneisses is calc-alkali peraluminous S-type granodiorite and thus of GAA gneisses is calc-alkali metaluminous diorite. The GBA protolith showed a continental active margin characteristic that may belong to the earlier Pan-African event, at ~780 to 750 Ma, whereas the GAA protolith could be formed in the island arc/fore-arc event, at ~753 Ma. Both groups were ordered in two lines suggesting two different sources where the crustal intervention is more or less marked, by juvenile upper continental crust for GBA protolith, and by young lower continental crust for GAA protolith. Correlated to the anti-atlasic formations of the same age, the geochemical similarities suggest a comparable geodynamic evolution that is closely linked to a Neoproterozoic continental convergent margin in the north of West-African Craton (WAC), collided at late Pan-African orogenesis. This collision induced the strongly N-S deformation that was materialized by the overthrusting of the GAA protolith onto the GBA protolith, and by the forming of the Ourika gneissic massif as a submeridian dome. Keywords: Ourika old massif; gneissic protoliths; Pan-African orogenesis; mineralogy and geochemistry; geodynamic evolution
An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults
The molecular basis of genetic predisposition to pulmonary tuberculosis in adults remains largely elusive. Few candidate genes have consistently been implicated in tuberculosis susceptibility, and no conclusive linkage was found in two previous genome-wide screens. We report here a genome-wide linkage study in a total sample of 96 Moroccan multiplex families, including 227 siblings with microbiologically and radiologically proven pulmonary tuberculosis. A genome-wide scan conducted in half the sample (48 families) identified five regions providing suggestive evidence (logarithm of the odds [LOD] score >1.17; P < 0.01) for linkage. These regions were then fine-mapped in the total sample of 96 families. A single region of chromosome 8q12-q13 was significantly linked to tuberculosis (LOD score = 3.49; P = 3 Ă 10â5), indicating the presence of a major tuberculosis susceptibility gene. Linkage was stronger (LOD score = 3.94; P = 10â5) in the subsample of 39 families in which one parent was also affected by tuberculosis, whereas it was much lower (LOD score = 0.79) in the 57 remaining families without affected parents, supporting a dominant mode of inheritance of the major susceptibility locus. These results provide direct molecular evidence that human pulmonary tuberculosis has a strong genetic basis, and indicate that the genetic component involves at least one major locus with a dominant susceptibility allele
IL-12RÎČ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey
BACKGROUND AND OBJECTIVES: In the last decade, autosomal recessive IL-12RÎČ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12RÎČ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common. METHODS AND PRINCIPAL FINDINGS: We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12RÎČ1 deficiency. Despite the small sample studied, our findings suggest that IL-12RÎČ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease. SIGNIFICANCE: This finding may have important medical implications, as recombinant IFN-Îł is an effective treatment for mycobacterial infections in IL-12RÎČ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity
Regulation of human CD4+ T cell differentiation
Naive CD4+ T cells differentiate into specific effector subsetsâTh1, Th2, Th17, and T follicular helper (Tfh)âthat provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12RÎČ1/TYK2 and IFN-ÎłR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10âsecreting cells. IL12RÎČ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation
Impaired IL-23-dependent induction of IFN-gamma underlies mycobacterial disease in patients with inherited TYK2 deficiency
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-alpha/beta (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-gamma is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.ANRS Nord-Sud ; CIBSS ; CODI ; Comité para el Desarrollo de la Investigación ; Fulbright Future Scholarshi
Characterization of greater middle eastern genetic variation for enhanced disease gene discovery
The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized âgenetic purgingâ. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics
Autoantibodies against type I IFNs in patients with critical influenza pneumonia
In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old
Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-Ï auto-Abs in children
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
Genetic Diversity and Population Structure of Mycobacterium tuberculosis in Casablanca, a Moroccan City with High Incidence of Tuberculosis
Although lower-resource countries have by far the highest burden of tuberculosis, knowledge of Mycobacterium tuberculosis population structure and genetic diversity in these regions remains almost nonexistent. In this paper, 150 Moroccan M. tuberculosis isolates circulating in Casablanca were genotyped by random amplified polymorphic DNA analysis using 10 different primers and by mycobacterial interspersed repetitive units-variable number of tandem repeats typing at 12 loci. The population genetic tests revealed a basically clonal structure for this population, without excluding rare genetic exchanges. Genetic analysis also showed a notable genetic polymorphism for the species M. tuberculosis, a weak cluster individualization, and an unexpected genetic diversity for a population in such a high-incidence community. Phylogenetic analyses of this Moroccan sample also supported that these isolates are genetically heterogeneous