9 research outputs found

    Instabilities of a sand layer subjected to an upward water flow by a 2D coupled discrete element - Lattice Boltzmann hydromechanical model

    Get PDF
    This work deals with the numerical simulation of the instabilities occurring in a sand layer subjected to an upward water flow. A coupled Discrete Elements - Lattice Boltzmann hydromechanical model is used for this end. After a brief presentation of the numerical model, simulations of an upward fluid flow through granular deposits are performed for two cases namely under controlled hydraulic gradients and under controlled volumetric flow rates. In the first case i.e. under controlled hydraulic gradient, the simulations show that the quicksand condition is actually reached for a hydraulic gradient very close to the critical hydraulic gradient calculated from the global analysis of classical soil mechanics. The simulations point out moreover that the quicksand phenomenon could be produced locally under slightly lower gradients. In the second case i.e. under controlled volumetric flow rates, the simulations show that there are three levels of flow ; low flow rates that allow infiltration without any destabilization, medium flow rates that cause expansion of the deposit to increase its permeability and high flow rates which may cause the formation continuous tunnel between the upstream and the downstream sides as well as sand boils. It is shown also that under the controlled flow rate condition the hydraulic gradient remains in all cases less than the average critical hydraulic gradient

    Conservação e restauro de uma urna em vidro do século I d.C., encontrada em Mértola (Portugal)

    Get PDF
    International audienceThe evolution of capillary forces during evap-oration and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimen-tally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension of the liquid bridges. During both evaporation and extension, the change of interparticle capillary forces consists in a force decrease to zero either gradually or via rupture of the bridge. At small separations between the grains (short & wide bridges) during evaporation and at large volumes during extension, there is a slight initial increase of force. During evaporation, the capillary force decreases slowly at the begin-ning of the process and quickly at the end of the process; during extension, the capillary force decreases quickly at the beginning and slowly at the end of the process. Rup-ture during evaporation of the bridges occurs most abruptly for bridges with wider separations (tall and thin), sometimes occurring after only 25 % of the water volume was evapo-rated. The evolution (pinning/depinning) of two geometri-cal characteristics of the bridge, the diameter of the three-phase contact line and the "apparent" contact angle at the solid/liquid/gas interface, seem to control the capillary force evolution. The findings are of relevance to the mechanics of unsaturated granular media in the final phase of drying

    Instabilities of a sand layer subjected to an upward water flow by a 2D coupled discrete element - Lattice Boltzmann hydromechanical model

    No full text
    This work deals with the numerical simulation of the instabilities occurring in a sand layer subjected to an upward water flow. A coupled Discrete Elements - Lattice Boltzmann hydromechanical model is used for this end. After a brief presentation of the numerical model, simulations of an upward fluid flow through granular deposits are performed for two cases namely under controlled hydraulic gradients and under controlled volumetric flow rates. In the first case i.e. under controlled hydraulic gradient, the simulations show that the quicksand condition is actually reached for a hydraulic gradient very close to the critical hydraulic gradient calculated from the global analysis of classical soil mechanics. The simulations point out moreover that the quicksand phenomenon could be produced locally under slightly lower gradients. In the second case i.e. under controlled volumetric flow rates, the simulations show that there are three levels of flow ; low flow rates that allow infiltration without any destabilization, medium flow rates that cause expansion of the deposit to increase its permeability and high flow rates which may cause the formation continuous tunnel between the upstream and the downstream sides as well as sand boils. It is shown also that under the controlled flow rate condition the hydraulic gradient remains in all cases less than the average critical hydraulic gradient

    A three-scale cracking criterion for drying soils

    No full text
    Cracking is a most unwanted development in soil structures undergoing periodic drying and wetting. Desiccation cracks arise in an apparent absence of external forces. Hence, either an internal, self-equilibrated stress pattern resulting from kinematic incompatibilities, or a stress resulting from reaction forces at the constraints appear as a cracking cause, when reaching tensile strength. At a meso-scale, tubular drying pores are considered in the vicinity of a random imperfection, inducing a stress concentration in the presence of significant pore suction. This approach allows one to use the effective stress analysis, which otherwise, away from the stress concentration, usually yields compressive effective stress and hence a physically incompatible criterion for a tensile crack. Recent experiments on idealized configurations of clusters of grains provide geometrical data suggesting that an imperfection as a result of air entry deep into the granular medium penetrates over 4 to 8 internal radii of a typical pore could yield a tensile effective stress sufficient for crack propagation

    Etude par criblage des facteurs influents sur la réponse mécanique du béton sous compression uniaxiale

    No full text
    Issu de : RUGC20 Rencontres Universitaires de Génie Civil de l'AUGC, du mardi 22 mai au vendredi 25 septembre 2020, Université Cadi Ayyad de Marrakech.International audienceUne approche par éléments finis cohésifs-volumétriques, tenant compte des propriétés mécaniques de la zone de transition interfaciale (ITZ), est utilisée pour étudier le comportement mécanique du béton lors d'un essai de compression uniaxiale. Dans ce travail, un modèle géométrique bidimensionnel à l'échelle mésoscopique du béton numérique a été considéré. Les échantillons obtenus sont maillés à l'aide du logiciel GMSH avec une méthode de Delaunay.Les résultats des simulations à l’aide du Modèle de Zones Cohésives Frottantes (MZCF) permettent, à travers une étude de criblage de type Hadamard, d’apporter des éléments de réponses concernant les facteurs les plus influents et leur contribution à la résistance maximale du béton en compression uniaxiale

    Identification of a cohesive zone model for cement paste-aggregate interface in a shear test

    No full text
    International audienceThe development of tools, using a micromechanical approach, predicting the macroscopic behaviour of heterogeneous materials such as concrete, requires the knowledge of their microstructures (geometrical properties of phases), the behaviour of phases and the interaction laws between phases. This study is focused on a numerical modelling of a local shear test on a cement paste-aggregate composite using a cohesive zone model with the objective to identify the behaviour of the cement paste-aggregate interface. The computations use a 3D finite element modelling of the composite, using a cohesive law at the interface between the two phases. The cohesive model mimics the behaviour of the well-known interfacial transition zone. This work presents a methodology for the identification of cohesive law parameters at different stages of hydration and for different confining stresses using experimental results
    corecore