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IRSN-CNRS-Université de Montpellier, France
email : moulay-said.el-youssoufi@umontpellier.fr
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Abstract. This work deals with the numerical simulation of the instabilities occurring
in a sand layer subjected to an upward water flow. A coupled Discrete Elements - Lattice
Boltzmann hydromechanical model is used for this end. After a brief presentation of
the numerical model, simulations of an upward fluid flow through granular deposits are
performed for two cases namely under controlled hydraulic gradients and under controlled
volumetric flow rates. In the first case i.e. under controlled hydraulic gradient, the
simulations show that the quicksand condition is actually reached for a hydraulic gradient
very close to the critical hydraulic gradient calculated from the global analysis of classical
soil mechanics. The simulations point out moreover that the quicksand phenomenon
could be produced locally under slightly lower gradients. In the second case i.e. under
controlled volumetric flow rates, the simulations show that there are three levels of flow ;
low flow rates that allow infiltration without any destabilization, medium flow rates that
cause expansion of the deposit to increase its permeability and high flow rates which may
cause the formation continuous tunnel between the upstream and the downstream sides
as well as sand boils. It is shown also that under the controlled flow rate condition the
hydraulic gradient remains in all cases less than the average critical hydraulic gradient.
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1 INTRODUCTION

Quicksand condition can occur for a layer of sand subjected to an upward flow under
a hydraulic gradient close to the critical hydraulic gradient. The latter corresponds to
the state where the seepage force equals the submerged weight of the sand layer. Even if
the classical soil mechanics allows to obtain the critical hydraulic gradient which defines
the state of the beginning of soil uplift, it is not able to show the evolution of a soil layer
subjected to upward flow before and after the quicksand condition is reached. Further-
more, it does not allow to define the size of the zone affected by the phenomenon, i.e. a
restricted zone or a generalized uplift.

This work presents an analysis of the evolution of a sand layer subjected to an upward
flow under two different conditions ; first under a gradually increased hydraulic gradient
and second under a gradually increased volumetric flow rate. The analysis is carried out
using a numerical model based on the coupling of a discrete method to model the sand
grains with the Lattice Boltzmann method to model the water flow [1]. For the sake of
simplicity, the analysis is carried using 2D simulations.

2 DISCRETE ELEMENT METHOD

The Discrete Element approach models the grains of a granular material by independent
elements, each element interacts with its neighbors at the contact points. The overall
deformation of the medium is mainly due to the relative movements of the grains assumed
as rigid bodies. Therefore, the behavior of the medium can be described through the
integration of the dynamic equations applied to each element. Such equations are written
through Newton’s second law by taking all external forces into account, such as the contact
forces, the gravitational forces and the hydrodynamic forces. Since these forces can change
abruptly with time, the integration should be performed in an incremental manner using
small time steps.

The mollecular dynamics method originally proposed by Cundall and Strack [2] is
implemented in this work. This method allows a slight overlap of the grains which is
used to calculate the contact forces through explicit lows. We deal in this work with
a 2D modeling where the grains are assumed circular, hence to detect the contacts at
each time step the normal distance between any two grains i and j is examined. This
distance is computed as : Dn = ‖�xj − �xi‖ − rj − ri, where �xi, �xj are the i and j grains
positions and ri, rj their radii respectively. The two grains are in contact if they overlap
(Dn ≤ 0). A contact force applied by a grain j on a grain i is decomposed into normal and
tangential components. The normal force is calculated here using the viscoelastic linear
model (Fig.1a), hence �Fn = (−knDn − νnVn).�n, where Vn is the normal velocity of the
grain j relative to the grain i, kn and νn are the elastic and the viscous damping constants
respectively and �n is the unit vector pointing from i to j, i.e. : �n = (�xj − �xi)/‖�xj − �xi‖.

The tangential force is computed using the viscoelastic - frictional model (Fig.1b) as
�Fs = min (ksDs + νsVs, µFn)�s, where �s is the tangential unit vector obtained by rota-
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Figure 1: Modeling of the contact interaction forces ; (a) the normal force model, (b) the tagential force
model.

tion of the normal vector �n by an angle π/2 in the counterclockwise direction, Vs is the
tangential velocity of the grain j relative to the grain i, Ds is the cumulative tangential
displacement of the grain j relative to the grain i from the moment of contact initiation,
µ is the Coulomb’s coefficient of friction, ks and νs are the tangential elastic and viscous
damping constants respectively.

It should be noted that the choice of the elastic and the viscous damping constants
(kn and νn) is not arbitrary, in fact kn must be high enough to avoid substantial overlap
that affects the overall behavior, whereas νn that controls the damping in the material is
selected such that the restitution coefficient εn defined as the ratio of the normal velocities
at the start and the end of the contact is between 0 and 1.

Once the contact forces and the other external forces acting on a grain are obtained
at a discrete time t, accelerations are calculated through the dynamic equations,then
integrated to obtain the kinematic variables of the grain at time (t + ∆t). Considering
that accelerations are not constant during a time increment ∆t, special algorithms are
used to predict accurately the kinematic variables, such as the Velocity-Verlet algorithm.

Finally, it is important to note that in order to correctly describe the evolution of
the contact force, the time step ∆t should be sufficiently small compared to the contact
duration tc. It is usually taken as ∆t ≈ tc/10. For the viscoelastic model the contact
duration can be approximated by tc = π

√
meff/kn, where meff = mimj/(mi +mj), mi

and mj are the masses of the grains in contact. Therefore the maximum time step is
computed as :

∆tmax ≈ 0.1π
√
m/kn (1)

where m is the smallest effective mass in the system.

3 LATTICE BOLTZMANN METHOD

In the Lattice Boltzmann Method, one solves the kinetic equation for the particle
distribution function f(�x, �ξ, t), which depends on the spatial position �x, the velocity of

particules �ξ, at the time t. The macroscopic quantities of interest such as mass density ρ
and momentum density ρ�u are weighted averages of the distribution function :

ρ =

∫
fd�ξ (a) ρ�u =

∫
�ξfd�ξ (b) (2)
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A popular kinetic model adopted for the method is the so-called BGK (Bhatnagar, Gross
and Krook) model. In this model the collisions term in the Boltzmann equation is sim-
plified using the simple relaxation time approximation :

∂f

∂t
+ �ξ.�∇f = −1

λ
(f − f (0)) (3)

where f (0) is the equilibrium distribution function (Maxwell-Boltzmann equilibrium func-
tion) and λ is the relaxation time. To solve for f numerically, Eq.(3) is discretized twice :
a first discretization with respect to the time involving a time increment ∆t and a second
discretization based on the velocity space by chosing a finite set of velocity vectors that
particles can have. The continuous particle distribution function f(�x, �ξ, t) becomes there-
fore, a set of discrete distributions fi(�x, t) associated with the chosen velocity vectors �ei.
As an illustration, here is presented the D2Q9 model (2 Dimensions, 9 Velocity vectors)
which is widely used for 2D simulations. Figure 2a, sketches the discrete velocity vectors
in the D2Q9 model.

The discretizations lead to the LBGK (Lattice BGK) equation, that describes the
incremental evolution of the discrete particle distributions fi :

fi(�x+ �ei∆t, t+∆t)− fi(�x, t) = −1

τ

(
fi(�x, t)− f

(eq)
i (�x, t)

)
(4)

where f
(eq)
i is the discrete equilibrium distribution given as :

f
(eq)
i = ρwi

[
1 +

3

c2
�ei�.u+

9

2c4
(�ei�.u)

2 − 3

2c2
�u�.u

]
(5)

where c is a characteristic speed of the model, wi being the weighting factors; w0 = 4/9,
w2,4,6,8 = 1/9, w1,3,5,7 = 1/36, τ is the dimensionless relaxation time such as 1

τ
= ∆t

λ
.

Equation (4) describes the incremental evolution of the discrete particle distributions
fi at the nodes of a regular lattice having a space step ∆x = c∆t (Fig. 2b). Hence if the
space discretization’s step is selected, the characteristic speed of the model is defined by
c = ∆x

∆t
.

The fluid pressure p can be computed from the mass density through the equation of
state p = c2sρ, where cs is the sound speed of the model related to the lattice model’s
speed c as cs = c/

√
3.

It is shown through the Chapman-Enskog analysis [3] that LB models recover the in-
compressible Navier-Stokes equations when the density fluctuation of the fluid is assumed
to be negligible and the equivalent kinematic viscosity is given by :

ν =
1

3
c∆x

(
τ − 1

2

)
(6)

Therefore, in order to correctly simulate an incompressible fluid flow, one must ensure
that the density fluctuation is sufficiently small. This can be achieved using a model with
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Figure 2: (a) D2Q9 model, (b) Flow domain discretization using the D2Q9 model

the sound speed cs is larger enough than the maximum velocity of the simulated flow
umax, i.e. with a ’computational’ Mach number defined as Ma = umax

cs
sufficiently small.

In practice, Ma should be maintained, smaller than 0.1.
The discretization parameters are ∆x, ∆t and τ , if the viscosity of the fluid is given,

only two of these parameters can be chosen independently since they are related through
Eq. 6. In practice, it is often convenient to choose τ and ∆x as two independent param-
eters and compute ∆t from Eq. 6. This is due to the fact that τ is largely responsible for
the numerical stability of LB simulations and ∆x is often dictated by the space description
precision. In practice τ is typically chosen in the range ]0.5 , 3].

4 COUPLED DISCRETE ELEMENT - LATTICE BOLTZMANN MODEL

4.1 Solid moving boundary treatment and hydrodynamic forces computation

The treatment of a solid moving boundary is decisive in granular materials hydrome-
chanics. To model the fluid-solid no slip condition, we use in this work the interpolated
bounce back scheme proposed by Bouzidi et al. [4]. For a linear interpolation, the post-
collision distributions to be assigned to the solid boundary nodes before the streaming
step are

{
f out
î

(�xs, t) = 2qf out
i (�xf , t) + (1− 2q)f out

i (�xf ′ , t) + 6wiρw
�eî.�uw

c2
, q � 1

2

f out
î

(�xs, t) =
1
2q
f out
i (�xf , t) +

2q−1
2q

f out
î

(�xf ′ , t) + 3
q
wiρw

�eî.�uw

c2
, q � 1

2

(7)

where �eî refers to the opposite direction of the direction �ei (�eî = −�ei), �uw is the velocity
of the boundary, ρw is the fluid mass density at the boundary and q defines the fraction
of the boundary intersected link located in the fluid domain and calculated by referring

to Figure 3 as q =
‖�xf−�xw‖
‖�xf−�xs‖ .

When a solid boundary moves, there are grid nodes that move from the solid region
into the fluid region to become fluid nodes (indicated by � in Fig. 3). Therefore one must
specify the distribution functions applying to these nodes. In this work, unknown distri-
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Figure 3: Representation of a moving grain on the lattice grid

butions are approximated as the equilibrium distributions computed using the averaged
fluid’s density in the whole system and the velocity of the solid particle at the specified
node’s position just before it leaves the solid region.

The hydrodynamic forces are computed in this work through the momentum exchange
method [3].

4.2 Coupling procedure

As mentioned in the previous section, the time step in LBM (noted in the following
∆tLB) depends on the other discretization parameters and calculated from Eq. 6. ∆tLB is
often larger than the maximum value DEM time step noted here ∆tDEmax and calculated
from Eq. 1. Therfore, one should perform a number nd of DEM computation steps then
perform one LB computation step. This can be carried out by selecting the DEM time
step ∆tDE � ∆tDEmax, such that nd∆tDE = ∆tLB, with the integer number nd may be

computed as nd = Int
(

∆tLB

∆tDEmax

)
+ 1, then the DEM time step is set :

∆tDE =
∆tLB
nd

(8)

Note finally that the static buoyancy force is taken into account by multiplying the
gravitationnal acceleration by the coefficient (1− ρw/ρs), where ρw and ρs are the fluid
and solid densities respectively.
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5 2D SIMULATIONS OF AN UPWARD WATER FLOW THROUGH A
SAND LAYER

It is worth noting that 2D discrete element modeling of a granular deposit produces a
porous model with non interconnected pores. This completely changes the hydraulic prop-
erties of a saturated granular material. Therefore, the grains are maintained spaced, so
that intergranular pores remain interconnected. The radii of grains are slightly increased
in the discrete element modeling while kept equal to the actual radii in the Lattice-
Boltzmann discretization. Thus the contact forces between the grains develop before the
contact actually occurs. In this study, the distance added to the actual radius in the
discrete elements modeling is set equal to one spatial step in the Lattice-Boltzmann dis-
cretization (∆x), consequently, the space between each two grains contains at least one
node of the Lattice-Boltzmann grid.

The simulated deposit is composed of 300 polydisperse grains, with maximum and
minimum diameters of 0.4 and 0.8mm respectively. Periodic conditions are used in the
horizontal direction with a period length of 14.4mm. The resulting average deposit height
is about 8.8mm. The unit weight and kinematic viscosity of water are taken as γw =
10kN/m3 and ν = 10−6m2 respectively while the unit weight of solid grains γs is set to
26kN/m3. The grains are first deposited under gravity then placed into a water column of
the same section and of larger height and subjected to an upward water flow. The Lattice-
Boltzmann discretization in the horizontal direction is 400∆x, so that the smallest grain
diameter is discretized into about 11∆x.

Starting from its classical expression, the hydraulic gradient could be written as i =
γ′

γw

∆pS
W ′ . where γ

′ is the submerged unit weight of the soil, ∆p is the pressure drop between
the lower and upper horizontal surfaces of the deposit, S and W ′ are the horizontal
section and the submerged weight of the deposit respectively. The product ∆pS is the
resultant of external pressures applied to the deposit. With increasing ∆p, the quicksand
phenomenon triggers when the resultant of external pressures equals the submerged weight
of the deposit i.e. ∆pS = W ′, therefore the critical hydraulic gradient is ic =

γ′

γw
and the

applied hydraulic gradient could be written in terms of the critical hydraulic gradient as
i = ic

∆pS
W ′ . As S and W ′ are fixed (characteristics of the deposit), it results that in order

to impose a fraction of the critical hydraulic gradient, the only parameter to select is the
pressure drop ∆p.

5.1 Flow under constant hydraulic gradients

The deposit is subjected to an upward flow by imposing a hydraulic gradient. The
hydraulic gradient is varied gradually from very low values up to values close to the
critical gradient. It is found that for low values of the gradient (i � 0, 97ic) no uplift
of the deposit is observed. For (i � 0, 97ic) the uplift is observed but in different ways
depending on the applied hydraulic gradient. Figure 4 shows the deposit evolution over
time for three applied hydraulic gradients i = 0, 97ic, i = ic and i = 1, 1ic.
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These snapshots show that quicksand occurs in a similar manner for gradients i � ic,
in fact the deposit is fully raised initially, but for a low gradient (i = ic) it loosens quickly
while for a high gradient it may be raised like a shutter. This can be attributed to the high
pressure applied at the bottom of the deposit which prevents loosening. Furthermore, it
can be observed that the lifting is more quicker for the high gradient, since the grains
reach the end of the column of water in a shorter time; 0.18s for i = 1.1ic against 0.18s for
i = ic. For the case i = 0.97ic, the snapshots show that quicksand develops step by step ;
first there is a grain rearrangement in some areas at the bottom of the deposit that allows
the creation of large channels where there is no pressure drop (surrounded areas on the
second snapshot). Accordingly, the hydraulic gradient in the area overlying the channel
becomes larger. This increase in gradient initiates an uprising of this zone which leads to
the loosening of the lower zone. This loosening grows progressively until the quicksand
onset. It should be noted that in this case (i = 0.97ic) the quicksand process is much
slower than in the case with i � ic (in this case the total process time is 0.9s), and the
initial stage i.e. the grain rearrangement is the most time consuming stage.

5.2 Flow under constant volumetric flow rates

The deposit is subjected to an upward flow by imposing a controlled flow rate. The flow
rate is incremented from zero to relatively high values gradually. i.e. it is increased only
after a sufficient number of time steps. For small flow rates where the deposit remains
stable the incrementation is then done after the establishment of the steady state under
the previous flow rate. Figure 5 shows snapshots of the deposit for different flow rates.
It may be noted that, depending on the behavior of the deposit, the flow rates could
be classified as low, medium and high. For low flow rates, the deposit remains stable
(Q ≤ 1.26× 10−5m3/s in our case). The medium flows induce a deposit dilation behavior
(1.26 × 10−5m3/s ≤ Q ≤ 12.0 × 10−5m3/s in our case). For the first flow rates causing
a dilation, only a widening of some intergranular channels is observed as surrounded in
the snapshot Q = 1.32 × 10−5m3/s. Then, from a certain level of flow rate, the deposit
becomes unstable, it is observed a development of unstable water pockets within the
deposit which rise irregularly towards the surface. These pockets are larger for large flow
rates. The high flow rates corresponds to the formation and the evolution of a continuous
tunnel between the upstream and the downstream sides as well as sand boils, as shown
in the snapshots Q = 18× 10−5m3/s and Q = 24× 10−5m3/s.

For each value of the flow rate we measured the porosity as well as the resulting
hydraulic gradient. For small flow rates where the deposit remains at rest, the porosity
and the hydraulic gradient are measured after the steady state is established. However for
high flow rates the deposit becomes unstable, the porosity and the hydraulic gradient are
then taken as averages over a sufficient number of time steps. Figures 6 and 7 show the
evolution of the average porosity and the average hydraulic gradient with the imposed
flow rate respectively. In Fig. 7, the hydraulic gradient is normalized with respect to
critical hydraulic gradient. Figure 6 shows that the porosity remains constant for the
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low flow rates, it slightly decreases before increasing almost proportionally to the flow
imposed. This indicates that the deposit can contract for the first flow rates that cause
destabilization and after the destabilization the dilation is almost proportional to the flow
imposed.

Figure 7 shows that for low flow rates the resulting hydraulic gradient is proportional
the the imposed flow rate which is in good agreement with Darcy’s law. This plot shows
also that the hydraulic gradient remains in all cases less than the critical hydraulic gra-
dient indicating that the engagement of instability prevents the increase of the hydraulic
gradient. The curve indicates also that once the flow rate reaches the destabilization value
(Q = 1.32× 10−5m3/s) the gradient evolution ceases to increase abruptly.

6 Concluding remarks

We investigated the quicksand instability using a coupled Lattice-Boltzmann-Discrete
element hydromechanical model. Simulations of an upward fluid flow through granular
deposits are performed for two cases namely under a gradually increased hydraulic gra-
dient and under a gradually increased volumetric flow rate. In the first case i.e. under
controlled hydraulic gradient, the simulations show that the quicksand condition is actu-
ally reached for a hydraulic gradient very close to the critical hydraulic gradient calculated
from the global analysis of classical soil mechanics. The simulations point out moreover
that the quicksand phenomenon could be produced locally under slightly lower gradients.
In the second case i.e. under gradually increased volumetric flow rate, the simulations
show that there are three levels of flow ; low flow rates that allow seepage without any
destabilization, medium flow rates that cause expansion of the deposit to increase its
permeability, such expansion is almost proportional to the flow imposed. And high flow
rates which may cause the formation of continuous tunnel between the upstream and the
downstream sides as well as sand boils. It is shown also that under the controlled flow
rate condition the hydraulic gradient remains in all cases less than the critical hydraulic
gradient.
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Figure 4: Snapshots in a chronological order, during the 2D simulation of the quicksand of a 300 grain
deposit for imposed hydraulic gradients i = 0.97ic, i = ic and i = 1.1ic.
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Snapshots of the deposit subjected to low flow rates 

Examples of snapshots of the deposit subjected to medium flow rates 

Examples of snapshots of the deposit subjected to high flow rates 

Figure 5: Snapshots of the deposit subjected to an upward flow with different flow rates.
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Figure 6: Evolution of the average porosity with the imposed flow rate
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Figure 7: Evolution of the average hydraulic gradient with the imposed flow rate.
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