846 research outputs found

    DNA copy number changes in young gastric cancer patients with special reference to chromosome 19

    Get PDF
    Only a few cytogenetic and genetic studies have been performed in gastric cancer patients in young age groups. In the present study we used the comparative genomic hybridisation (CGH) method to characterise frequent DNA copy number changes in 22 gastric cancer patients of 45 years or younger and three gastric cancer cell lines established from patients younger than 45 years. Analysis of DNA copy number changes revealed frequent DNA copy number increases at chromosomes 17q (52%), 19q (68%) and 20q (64%). To confirm the CGH results and to characterise the amplicon region on the most frequently amplified chromosome, chromosome 19, we carried out fluorescence in situ hybridisation (FISH) analysis and Southern blot analysis. Fluorescence in situ hybridisation with the bacterial artificial chromosome (BAC) clone mapped to 19q12 indicated a copy number increase in all eight tumour specimens studied. Southern blot analysis of six tumour specimens and three tumour cell lines, with five probes mapped to the 19q12-13.2 region, suggested cyclin E to be one of the candidate target genes in the 19q region for gastric cancer tumorigenesis. Cyclin E protein overexpression was verified in tumours with amplification on chromosome 19. Further studies are required to investigate the biological and clinical significance of 19q amplicon and cyclin E upregulation in gastric cancer of young patient

    In silico analysis and verification of S100 gene expression in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca<sup>2+ </sup>binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet.</p> <p>Methods</p> <p>Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR.</p> <p>Results</p> <p>At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer.</p

    Carbonic Anhydrase 5 Regulates Acid-Base Homeostasis in Zebrafish

    Get PDF
    The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5) mutation, collapse of fins (cof), which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders

    Recurrent and multiple bladder tumors show conserved expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors.</p> <p>Methods</p> <p>Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses.</p> <p>Results</p> <p>We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles.</p> <p>Conclusion</p> <p>Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.</p

    Large-scale proteomic identification of S100 proteins in breast cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression.</p> <p>Methods</p> <p>Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing.</p> <p>Results</p> <p>The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group.</p> <p>Conclusions</p> <p>This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is associated with breast cancer progression, and suggest that these proteins might act as potential prognostic factors for patient stratification. We propose that this may offer a significant contribution to the knowledge and clinical applications of the S100 protein family to breast cancer.</p

    Risk factors for developing COVID-19: a population-based longitudinal study (COVIDENCE UK)

    Get PDF
    Background: Risk factors for severe COVID-19 include older age, male sex, obesity, black or Asian ethnicity and underlying medical conditions. Whether these factors also influence susceptibility to developing COVID-19 is uncertain. Methods: We undertook a prospective, population-based cohort study (COVIDENCE UK) from 1 May 2020 to 5 February 2021. Baseline information on potential risk factors was captured by an online questionnaire. Monthly follow-up questionnaires captured incident COVID-19. We used logistic regression models to estimate multivariable-adjusted ORs (aORs) for associations between potential risk factors and odds of COVID-19. Results: We recorded 446 incident cases of COVID-19 in 15 227 participants (2.9%). Increased odds of developing COVID-19 were independently associated with Asian/Asian British versus white ethnicity (aOR 2.28, 95% CI 1.33 to 3.91), household overcrowding (aOR per additional 0.5 people/bedroom 1.26, 1.11 to 1.43), any versus no visits to/from other households in previous week (aOR 1.31, 1.06 to 1.62), number of visits to indoor public places (aOR per extra visit per week 1.05, 1.02 to 1.09), frontline occupation excluding health/social care versus no frontline occupation (aOR 1.49, 1.12 to 1.98) and raised body mass index (BMI) (aOR 1.50 (1.19 to 1.89) for BMI 25.0–30.0 kg/m2 and 1.39 (1.06 to 1.84) for BMI >30.0 kg/m2 versus BMI <25.0 kg/m2). Atopic disease was independently associated with decreased odds (aOR 0.75, 0.59 to 0.97). No independent associations were seen for age, sex, other medical conditions, diet or micronutrient supplement use. Conclusions: After rigorous adjustment for factors influencing exposure to SARS-CoV-2, Asian/Asian British ethnicity and raised BMI were associated with increased odds of developing COVID-19, while atopic disease was associated with decreased odds. Trial registration number: ClinicalTrials.gov Registry (NCT04330599)

    Protein Phosphatase 1 Dephosphorylates Profilin-1 at Ser-137

    Get PDF
    Profilin-1 (PFN1) plays an important role in the control of actin dynamics, and could represent an important therapeutic target in several diseases. We previously identified PFN1 as a huntingtin aggregation inhibitor, and others have implicated it as a tumor-suppressor. Rho-associated kinase (ROCK) directly phosphorylates PFN1 at Ser-137 to prevent its binding to polyproline sequences. This negatively regulates its anti-aggregation activity. However, the phosphatase that dephosphorylates PFN1 at Ser-137, and thus activates it, is unknown. Using a phospho-specific antibody against Ser-137 of PFN1, we characterized PFN1 dephosphorylation in cultured cells based on immunocytochemistry and a quantitative plate reader-based assay. Both okadaic acid and endothall increased pS137-PFN1 levels at concentrations more consistent with their known IC50s for protein phosphatase 1 (PP1) than protein phosphatase 2A (PP2A). Knockdown of the catalytic subunit of PP1 (PP1Cα), but not PP2A (PP2ACα), increased pS137-PFN1 levels. PP1Cα binds PFN1 in cultured cells, and this interaction was increased by a phosphomimetic mutation of PFN1 at Ser-137 (S137D). Together, these data define PP1 as the principal phosphatase for Ser-137 of PFN1, and provide mechanistic insights into PFN1 regulation by phosphorylation

    Nox4 Mediates Renal Cell Carcinoma Cell Invasion through Hypoxia-Induced Interleukin 6- and 8- Production

    Get PDF
    Inflammatory cytokines are detected in the plasma of patients with renal cell carcinoma (RCC) and are associated with poor prognosis. However, the primary cell type involved in producing inflammatory cytokines and the biological significance in RCC remain unknown. Inflammation is associated with oxidative stress, upregulation of hypoxia inducible factor 1-alpha, and production of pro-inflammatory gene products. Solid tumors are often heterogeneous in oxygen tension together suggesting that hypoxia may play a role in inflammatory processes in RCC. Epithelial cells have been implicated in cytokine release, although the stimuli to release and molecular mechanisms by which they are released remain unclear. AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status and a role for AMPK in the regulation of cell inflammatory processes has recently been demonstrated.We have identified for the first time that interleukin-6 and interleukin-8 (IL-6 and IL-8) are secreted solely from RCC cells exposed to hypoxia. Furthermore, we demonstrate that the NADPH oxidase isoform, Nox4, play a key role in hypoxia-induced IL-6 and IL-8 production in RCC. Finally, we have characterized that enhanced levels of IL-6 and IL-8 result in RCC cell invasion and that activation of AMPK reduces Nox4 expression, IL-6 and IL-8 production, and RCC cell invasion.Together, our data identify novel mechanisms by which AMPK and Nox4 may be linked to inflammation-induced RCC metastasis and that pharmacological activation of AMPK and/or antioxidants targeting Nox4 may represent a relevant therapeutic intervention to reduce IL-6- and IL-8-induced inflammation and cell invasion in RCC

    Prognostic factors affecting survival after surgical resection of gastrointestinal stromal tumours: a two-unit experience over 10 years

    Get PDF
    BACKGROUND: Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasm of the gastrointestinal (GI) tract which has only been recently described based on their specific immunohistochemistry and the presence of particular KIT-related mutations which potentially make them targets for tyrosine kinase inhibition. METHODS: Sixty-one patients (29 M; 32 F, median age 60 years; range: 23–86 years) between June 1994 and March 2005, were analyzed from two allied institutions. Patient, tumour, and treatment variables were analyzed to identify factors affecting survival. RESULTS: Of the 61 patients, 55 (90%) underwent complete surgical resection of macroscopic disease. The 5-year overall survival (OS) rate in the 61 patients was 88% and the 5-year disease-free survival (DFS) in the 55 cases completely resected was 75%. Univariate analysis revealed that R0 resection was strongly associated with a better OSrate (p < 0.0001). Likewise, univariate analysis also showed high mitotic count of > 10 mitoses/per 50 HPF was a significant variable in worse prognosis for OS (≤ 10 mitoses/per 50 HPF 95% 5-year OS vs. > 10 mitoses/per 50 HPF 74% 5-year OS, respectively; p = 0.013). On subsequent multivariate analysis, only high mitotic count remained as a significant negative prognostic variable for OS (p = 0.029). Among patients resected for cure, there were 8 recurrences during follow-up. The mean time to recurrence was 21 ± 10 months (range: 4–36 months). Univariate analysis revealed that mitotic count of > 10 mitoses per 50 high power fields, intratumoural necrosis, and pathological tumour size (> 10 cm in maximal diameter) significantly correlated with DFS (p = 0.006, 0.002 and 0.02, respectively), with tumour necrosis and high mitotic count remaining as independent predictive variables affecting prognosis on subsequent multivariate analysis. CONCLUSION: Most GISTs are resectable with survival principally dependent upon mitotic count and completeness of resection. Future metabolic and genetic analyses will define the role of and resistance to induction or postoperative adjuvant targeted kinase inhibition therapy
    corecore