19 research outputs found

    Origins and functions of liver myofibroblasts

    Get PDF
    AbstractMyofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to other aspects of the wound healing response, including regeneration and angiogenesis. They display the de novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are derived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are currently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease

    Protective potential of the gallbladder in primary sclerosing cholangitis

    Full text link
    Background & Aims: Gallbladder enlargement is common in patients with primary sclerosing cholangitis (PSC). The gallbladder may confer hepatoprotection against bile acid overload, through the sequestration and cholecystohepatic shunt of bile acids. The aim of this study was to assess the potential impact of the gallbladder on disease features and bile acid homeostasis in PSC.Methods: Patients with PSC from a single tertiary center who underwent liver MRI with three-dimensional cholangiography and concomitant analyses of serum bile acids were included. Gallbladder volume was measured by MRI and a cut-off of 50 ml was used to define gallbladder enlargement. Bile acid profiles and PSC severity, as assessed by blood tests and MRI features, were compared among patients according to gallbladder size (enlarged vs. normal-sized) or presence (removed vs. conserved). The impact of cholecystectomy was also assessed in the Abcb4 knockout mouse model of PSC.Results: Sixty-one patients with PSC, all treated with ursodeoxycholic acid (UDCA), were included. The gallbladder was enlarged in 30 patients, whereas 11 patients had been previously cholecystectomized. Patients with enlarged gallbladders had significantly lower alkaline phosphatase, a lower tauro-vs. glycoconjugate ratio and a higher UDCA vs. total bile acid ratio compared to those with normal-sized gallbladders. In addition, gallbladder volume negatively correlated with the hydrophobicity index of bile acids. Cholecystectomized patients displayed significantly higher aspartate aminotransferase and more severe bile duct strictures and dilatations compared to those with conserved gallbladder. In the Abcb4 knockout mice, cholecystectomy caused an increase in hepatic bile acid content and in circulating secondary bile acids, and an aggravation in cholangitis, inflammation and liver fibrosis.Conclusion: Altogether, our findings indicate that the gallbladder fulfills protective functions in PSC.Impact and implications: In patients with primary sclerosing cholangitis (PSC), gallbladder status impacts on bile acid homeostasis and disease features. We found evidence of lessened bile acid toxicity in patients with PSC and enlarged gall-bladders and of increased disease severity in those who were previously cholecystectomized. In the Abcb4 knockout mouse model of PSC, cholecystectomy causes an aggravation of cholangitis and liver fibrosis. Overall, our results suggest that the gallbladder plays a protective role in PSC.& COPY; 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Etude structurale et fonctionnelle de FHL2 (un adaptateur pour le complexe de signalisation des intégrines)

    No full text
    FHL2 (Four and a Half LIM domain protein 2) appartient à une famille émergeante de protéines contenant des domaines LIM. Nous avons produit deux protéines recombinantes par le système baculovirus/Cellules dínsecte. Les protéines recombinantes ainsi que la protéine naturelle ont été caractérisées par SDS-PAGE et par spectrométrie de masse MALDI-TOF. La masse moléculaire mesurée de la protéine naturelle FHL2 est de 32742 Da et celle calculée de 32192 Da. Cependant, sa masse moléculaire apparente en SDS-PAGE est de 41 kDa, indiquant que la protéine naturelle a un comportement électrophorétique anormal, probablement dûe à des modifications post-traductionnelles. Au niveau cellulaire, FHL2 est présente à la fois dans le noyau et au niveau des lamellipodes. Pour tester son rôle dans la formation de complexes multi-moléculaires, la protéine recombinante a été utilisée pour isoler des partenaires dínteraction par chromatographie dáffinité. Ces derniers ont été identifiés par leur empreinte peptidique massique par spectrométrie de masse MALDI-TOF. Des protéines associées au cytosquelette sont présentes parmi les protéines retenues elles co-localisent avec FHL2 dans les lamellipodes en immunofluorescence indirecte. Ces résultats suggèrent fortement que FHL2 agirait comme un adaptateur spécifique impliqué dans la formation des adhésions cellulaires naissantes dans les structures dynamiques de la membrane plasmique.LYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Culture Model of Rat Portal Myofibroblasts

    Get PDF
    International audienceMyofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in primary culture. In conclusion, this straightforward and reproducible method of PMF culture, can be used to identify new markers of PMFs at different stages of differentiation, to compare their phenotype with those of HSC-MFs and ultimately determine their progenitors and specific functions in liver wound-healing

    Diet‐Induced Dysbiosis and Genetic Background Synergize With Cystic Fibrosis Transmembrane Conductance Regulator Deficiency to Promote Cholangiopathy in Mice

    No full text
    International audienceThe most typical expression of cystic fibrosis (CF)-related liver disease is a cholangiopathy that can progress to cirrhosis. We aimed to determine the potential impact of environmental and genetic factors on the development of CF-related cholangiopathy in mice. Cystic fibrosis transmembrane conductance regulator (Cftr)-/- mice and Cftr +/+ littermates in a congenic C57BL/6J background were fed a high medium-chain triglyceride (MCT) diet. Liver histopathology, fecal microbiota, intestinal inflammation and barrier function, bile acid homeostasis, and liver transcriptome were analyzed in 3-month-old males. Subsequently, MCT diet was changed for chow with polyethylene glycol (PEG) and the genetic background for a mixed C57BL/6J;129/Ola background (resulting from three backcrosses), to test their effect on phenotype. C57BL/6J Cftr -/- mice on an MCT diet developed cholangiopathy features that were associated with dysbiosis, primarily Escherichia coli enrichment, and low-grade intestinal inflammation. Compared with Cftr +/+ littermates, they displayed increased intestinal permeability and a lack of secondary bile acids together with a low expression of ileal bile acid transporters. Dietary-induced (chow with PEG) changes in gut microbiota composition largely prevented the development of cholangiopathy in Cftr -/- mice. Regardless of Cftr status, mice in a mixed C57BL/6J;129/Ola background developed fatty liver under an MCT diet. The Cftr -/- mice in the mixed background showed no cholangiopathy, which was not explained by a difference in gut microbiota or intestinal permeability, compared with congenic mice. Transcriptomic analysis of the liver revealed differential expression, notably of immune-related genes, in mice of the congenic versus mixed background. In conclusion, our findings suggest that CFTR deficiency causes abnormal intestinal permeability, which, combined with diet-induced dysbiosis and immune-related genetic susceptibility, promotes CF-related cholangiopathy

    The PDZ domain of TIP-2/GIPC interacts with the C-terminus of the integrin alpha5 and alpha6 subunits

    No full text
    Different cDNA libraries were screened by the yeast two-hybrid system using as a bait the cytoplasmic sequence of integrin alpha6A or alpha6B subunits. Surprisingly, the same PDZ domain-containing protein, TIP-2/GIPC, was isolated with either of the variants, although their sequences are different. Direct interaction assays with the cytoplasmic domain of the integrin alpha1--7 subunits revealed that in addition to alpha6A and alpha6B, TIP-2/GIPC reacted also with alpha5, but not other alpha integrin subunits. The specificity of the interaction was confirmed by in vitro protein binding assays with purified peptides corresponding to integrin cytoplasmic domains. Further analysis with either truncation fragments of TIP-2/GIPC or mutated integrin cytoplasmic domains indicated that the interaction occurs between the PDZ domain of TIP-2/GIPC and a consensus PDZ domain-binding sequence, SDA, present at the C-terminus of the integrin alpha5 and alpha6A subunits. The integrin alpha6B subunit terminates with a different sequence, SYS, which may represent a new PDZ domain-binding moti
    corecore