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Myofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of
smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to
other aspects of the wound healing response, including regeneration and angiogenesis. They display the de
novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are de-
rived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured
liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are cur-
rently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular
microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived
myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and
in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which
myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated
that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably
not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of
basic research to human disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Myofibroblasts are the main effectors of fibrosis in all tissues. They
also make a major contribution to other aspects of the wound healing
response, including regeneration, inflammation, angiogenesis, normal
tissue repair after acute injury and to the stromal reaction in
tumors. They combine phenotypic features of fibroblasts, such as
the production of extracellular matrix, with the contractile functions
of the smooth muscle cells involved in tissue architecture distortion.
Myofibroblasts may be defined as cells that develop contractile force
and stress fibers, de novo, and in vivo [1]. The most widely used and
accessible marker of these cells is the de novo expression of
α-smooth muscle actin (α-SMA), although this is not an absolute
requirement for the identification of a cell as a myofibroblast. Other
markers of myofibroblasts (endosialin, P311, integrin α11β1,
osteopontin, periostin) have been proposed, but all were identified
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in specific conditions, and it remains unclear whether they could
serve as general markers [1]. The precursors of myofibroblasts have
also yet to be identified. In most tissues, myofibroblasts are thought to
originate from resident fibroblasts, but they may also be derived from
other cell types, mostly ofmesenchymal origin, such as vascular smooth
muscle cells, pericytes and adipocytes. There is also evidence to suggest
that myofibroblasts may be derived from circulating fibrocytes or
resident epithelial cells, through epithelial-to-mesenchymal transition,
although recent studies argue against a significant contribution of
these mechanisms to fibrosis. In addition, resident fibroblasts are
themselves heterogeneous and may even include antifibrotic subpopu-
lations, such as lung Thy-1-expressing fibroblasts [2].

2. Origins of myofibroblasts in liver fibrosis

Myofibroblasts are absent from the normal liver, but they accumulate
at sites of injury, in patients with chronic liver diseases. They are the
major source of extracellular matrix constituents in the injured
liver, as clearly demonstrated by clinical and experimental studies.
However, although myofibroblasts appear to be necessary for the
development of fibrosis, they may not be sufficient. For example, in
scleroderma [1] and focal nodular hyperplasia (unpublished
personal observation), the liver may contain large numbers of
myofibroblastic cells without significant fibrosis. In the liver, as in
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other tissues, the origin of myofibroblasts is a matter of debate.
During liver development, the septum transversum-derived meso-
thelium, which signals to induce hepatogenesis from the foregut
endoderm, gives rise to sinusoidal pericytes, called hepatic stellate
cells (HSCs), and perivascular mesenchymal cells, including portal
fibroblasts, smooth muscle cells and fibroblasts around the central
veins [3]. All these cells therefore have a common mesodermal
origin, different from that of sinusoidal endothelial cells, Kupffer
cells and hepatoblasts. It is now more than 35 years since the initial
demonstration by Hans Popper and coworkers that transitional cells
with the morphologic characteristics of vitamin A-containing cells
(i.e. HSCs) and fibroblasts, overproduce fibrillar collagen in rats
with carbon tetrachloride-induced liver injury [4]. The paradigm of
hepatic stellate cell (HSC) activation giving rise to myofibroblasts
has since dominated the focus of research on liver fibrosis [5]. HSC
was the first major cell type in the liver to be identified as a
prominent source of collagen production in the injured liver
[6], and to be shown to acquire a myofibroblastic phenotype in
culture, with the ability to overproduce extracellular matrix, to
contract and to undergo chemoattraction [7–10]. The factors and
mechanisms triggering the myofibroblastic differentiation of hepatic
stellate cells have been reviewed extensively elsewhere [5]. They
include biological (e.g. lipopolysaccharide) [11], physicochemical
(e.g. hypoxia) [12] and mechanical (e.g. substrate stiffness) [13]
stimuli. There is now both in vitro and in vivo evidence for the
existence of more than one origin of liver myofibroblasts. In prepara-
tions of cells isolated from the liver, HSCs are recognized by the
fluorescence of their retinoid droplets under UV excitation at a
wavelength of 328 nm. Culture studies have clearly demonstrated
that other liver cell types, without fluorescent retinoid droplets,
can give rise to myofibroblasts [14,15]. In situ ultrastructural studies
have shown that fibroblasts reside in the portal mesenchyme and
accumulate, with fibrosis, around bile ducts in bile duct-ligated rats
[16], precisely in the zones in which α-SMA can be detected
[15]. Moreover, immunohistochemical studies have shown that, in
fibrotic human or rat liver, portal and septal myofibroblasts have
expression profiles different from those of interface myofibroblasts
or sinusoidally located HSCs, suggesting that at least two subpopula-
tions of myofibroblasts — HSC-derived myofibroblasts (HSC-MFs)
and portal mesenchymal cell-derived myofibroblasts (PMFs) —

populate the injured liver [17]. The possible contribution of
epithelial-to-mesenchymal transition to renal fibrosis in vivo has
been challenged by studies based on genetic cell lineage tracing in
mice [18]. Likewise, studies based on genetic cell fate tracking have
strongly challenged the concept that either hepatocytes or
cholangiocytes acquire a mesenchymal phenotype in vivo through
epithelial-to-mesenchymal transition to produce the extracellular
matrix in liver fibrosis [19–21]. A number of studies have also
suggested that circulating cells from the bone marrow can function
as stem cells, contributing to the liver myofibroblast population
[22]. However, a recent study based on a system for the exclusive
detection of bone marrow-derived collagen-producing cells, showed
that bone marrow-derived cells played a limited role in collagen
production during liver fibrosis [23].

3. Portal myofibroblasts

In almost all types of chronic liver disease, including biliary
(i.e. primary biliary cirrhosis, biliary atresia), viral, alcoholic and
non-alcoholic fatty liver diseases, fibrosis develops predominantly in
the portal area and appears to progress from this area, even if the
primary targets of injury are intralobular hepatocytes [24–28]. This
observation suggests that the contribution of PMFs to liver fibrosis
may be more important than generally assumed. Furthermore, in
chronic liver diseases of various origins, including viral hepatitis and
non-alcoholic fatty liver disease, fibrogenesis is associated with the
occurrence of a ductular reaction, in which duct-like cells with
progenitor features proliferate, expanding outwards from the
portal area. The correlation between the extents of the ductular
reaction and of replicative senescence in hepatocytes suggests that
ductular/progenitor cells may be recruited in situations in which
the regeneration of mature hepatocytes is impaired. One possible
explanation for this is that ductular/oval cells are less sensitive
to TGF-β-induced growth inhibition than hepatocytes [29]. Several
potential mechanisms by which cholangiocytes or hepatic progenitor
cells may promote fibrogenesis (Fig. 1) have been reviewed
elsewhere [30] and new mechanisms have recently been put forward.
Ductular/progenitor cells may act on matrix accumulation directly,
through the release of tissue inhibitor metalloprotease 1 (TIMP1),
for example [31]. They may act on myofibroblasts by releasing
promitogenic, profibrogenic, chemotactic or anti-apoptotic factors.
Hepatic progenitor cells have been shown to increase hepatic
fibrogenesis, in an experimental model in which rat liver fibrosis is
induced by chronic treatment with a combination of carbon tetrachlo-
ride and acetylaminofluorene, promoting activation of the hepatic
progenitor cell compartment [32]. Chronic treatment with carbon
tetrachloride alone caused liver fibrosis, which began around the
central veins, eventually extending to form incomplete centro-central
septa with sparse fibrogenic cells expressing α-smooth muscle actin.
In acetylaminofluorene/carbon tetrachloride-treated animals, the
fibrogenic response was strongly amplified and an expansion of the
subpopulation of hepatic progenitor cells expressing transforming
growth factor-β (TGF-β) was observed. In this model, hepatic
progenitor cells, through their production of TGF-β, contributed to the
accumulation of α-SMA-positive myofibroblasts in the ductular
reaction, enhancing fibrosis but also leading to disease progression and
a pattern of fibrosis similar to that observed in humans. Furthermore,
ductular cells produce much more αvβ6 integrin than normal
cholangiocytes. This molecule is closely linked to periductal fibrogenesis,
through the activation of TGF-β [33]. Ductular cells secrete growth
arrest-specific protein 6 (Gas6), which protects myofibroblasts against
apoptosis [34]. A role for the hedgehog pathway in the interaction
between ductular cells and portal myofibroblasts was also recently
highlighted. Both cell types producehedgehog ligands, thereby enhancing
each other's viability and proliferation, and the activation of this pathway
inmice amplifies both the ductular and fibrogenic responses triggered by
bile duct ligation [35]. Notch signaling is essential to the development of
tubular epithelial cells in the kidney, and activation of this pathway in
tubular cells has been implicated in renal fibrosis [36]. Notch signaling is
also essential in biliary differentiation and has recently been shown to
be activated in rat experimental liver fibrosis. In this context, high levels
of Notch3, Jagged1 (a Notch ligand) and Hes1 (a downstream target
gene) were observed and the blocking of Notch signaling activation by a
γ-secretase inhibitor significantly attenuated portal fibrosis [37]. In
Alagille syndrome, a disease caused by genetic defects of Notch signaling
and characterized by severe ductopenia, reactive ductular cells and
hepatic progenitor cells are very rare and liver fibrosis ismuch less severe
than in biliary atresia, a disease in which an intense ductular reaction is
associatedwith rapid progression to biliary cirrhosis [38]. The importance
of the Notch pathway in liver fibrosis has also been demonstrated in
double-heterozygousmicehaploinsufficient for both Jagged1andanother
gene (Lunatic) altering ligand–receptor affinity. In this model, intense
ductular proliferation contrasted with low levels of fibrosis [39]. Finally,
hepatic progenitor cells have been shown to produce adipokines. In
pediatric non-alcoholic fatty liver disease, the degree of fibrosis is related
to the production of resistin [28], an adipokine with proinflammatory
effects on HSCs [40] and hepatic progenitor cells.

No reliable markers have yet been identified for distinguishing
between HSCs and portal mesenchymal cells at the myofibroblast
stage. We have established a culture model for PMFs obtained by
outgrowth from rat bile duct preparations [15]. These cells have
several features in common with rat liver myofibroblasts [14,41]



Fig. 1. Interaction of ductular/hepatic progenitor cells with liver myofibroblasts in wound healing. Ductular/hepatic progenitor cells bidirectionally interact with myofibroblasts,
through multiple pathways, to proliferate and trigger profibrogenic, proangiogenic and/or proregenerative actions, depending on their origin and microenvironment.
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and with portal fibroblasts in culture [41] obtained by other isolation
procedures, and can be distinguished from HSC-MFs on the basis of
morphological criteria and growth behavior. Their myofibroblastic
differentiation requires TGF-β and mechanical tension [41], and can
be triggered by PDGF-BB [41] or bile acids [42]. Following isolation
from normal rat liver and culture in the same conditions, HSC-MFs
are round, with an enlarged cytoplasm and poor survival after three
or four passages, whereas PMFs tend to be more elongated, with
more stress fibers, and proliferate more strongly during multiple
passages [43]. Desmin production is differentially regulated, being
upregulated during activation in HSCs and shut down in portal
fibroblasts. Staining for desmin might therefore be useful for
distinguishing between the two cell populations at the myofibroblast
stage [15,16,41,44]. In two models of cholestatic liver injury induced
by bile duct ligation and hepatic arterial deprivation, fibrosis involves
myofibroblasts that are predominantly desmin-negative and, thus,
presumably, of portal origin [45]. In these models, HSCs undergo
massive early phenotypic changes, marked by increases in proliferation
and desmin overproduction [44,45], but only a minority of these cells
are converted into matrix-producing myofibroblasts, which, after
prolonged injury, appear to circumscribe wounded hepatocytes to
form micronodules [45].

We investigated the relative contributions of PMFs and HSC-MFs
to various aspects of the liver wound-healing response, by comparing
these two cell populations at similar stages of myofibroblastic
differentiation (i.e. with similar levels of α-SMA) in culture, by
comparative 2-DE MS/MS proteomic analysis [43]. We identified
proteins displaying differentially expression, all with myofibroblast-
related functions, in PMFs. Phospho-cofilin, a small actin-binding
protein that accumulates during myofibroblast differentiation and
promotes stress fiber formation and collagen contraction, was the
protein for which the difference in levels was the greatest. Most of
the proteins overproduced in HSC-MFs were involved in stress
responses, relating to hypoxic stress in particular, in keeping
with the interplay known to occur between interlobular hypoxia,
angiogenesis and fibrogenesis in the liver [46]. The protein displaying
the highest level of overproduction in these cells was cytoglobin,
which is also known as stellate cell activation-associated protein
(STAP), a hypoxia-inducible hexacoordinated globin with reactive
oxygen species (ROS)-scavenging properties. In HSCs, cytoglobin is
upregulated during myofibroblastic differentiation [43,47] and
protects against oxidative stress and fibrosis [48]. In this analysis,
we identified new potential markers in addition to those previously
identified as distinguishing between the two myofibroblastic cell
populations (e.g. fibulin 2 and Thy-1 cell surface antigen in PMFs;
reelin, cytoglobin, α2-macroglobin, mannan-binding lectin serine
peptidase 1 (MASP-1), glial fibrillary acidic protein (GFAP) and
retinol-binding protein (RBP) in HSC-MFs (Table 1)). Overall these
and other ongoing studies suggest that both myofibroblastic cell
types, each exposed to a particular microenvironment (hypoxia for
HSC-MFs, ductular reaction for PMFs), expand and carry out
specialist functions, in scarring and inflammation for PMFs, and in
vasoregulation and hepatocellular healing for HSC-MFs.

4. Myofibroblasts in liver angiogenesis

Liver injury causes vascular disorganization and local tissue
hypoxia, which begins early in the course of disease [46]. Soon after
the induction of injury and long before the onset of cirrhosis
hypoxia-induced VEGF expression occurs, triggering angiogenesis, in
various experimental models [12,49,50]. An oxygen gradient is
established by unidirectional blood flow from the portal vein and
hepatic artery to the central vein. Consequently, the periportal area
is less likely to undergo extreme oxygen deprivation than intralobular
areas. Interestingly, in a proteomic comparison of the two cell types,
we found that genes encoding proteins involved in the response to
hypoxia, such as cytoglobin, were more strongly expressed in
HSC-MFs than in PMFs. It has been suggested that HSC-MFs contrib-
ute to angiogenesis at the leading edge of fibrotic septa [51].

Angiogenesis leads to the formation of new blood vessels from
pre-existing vessels. In chronic liver diseases, angiogenesis has
several major consequences: it contributes to portal hypertension
[52,53], aggravates fibrosis [52,54–56] and promotes tumorigenesis
(review in [46]). The role of liver myofibroblasts in angiogenesis has
been documented in the contexts of both cancer and fibrosis.
Research on the angiogenic functions of myofibroblasts has, to date,
focused on HSCs, but our personal unpublished data indicate that
portal mesenchymal cells also develop these functions. HSCs act as
liver pericytes for sinusoidal endothelial cells [5,57]. The two cell
types are found in close proximity and interactions between them



951S. Lemoinne et al. / Biochimica et Biophysica Acta 1832 (2013) 948–954
may be crucial for their development and function. The use of a
transgenic zebrafish model, in which HSCs were identified by the
presence of a basic helix–loop–helix transcription factor, revealed
that sinusoidal cells were required for the correct localization of
HSCs during development [58]. As mature liver pericytes, HSCs have
direct, physical interactions with endothelial cells and regulate
vascular development, stabilization, maturation and remodeling. HSCs
have been shown to develop focal adhesions (involving Ena/VASP
proteins), which promote angiogenesis [59]. HSCs also establish
paracrine interactions with endothelial cells. Once their differentiation
intomyofibroblasts has been activated during fibrogenesis, they secrete
proangiogenic cytokines: VEGF [12,49,51,60–62] and angiopoietin-1
[56,63] (Fig. 2). They also produce PDGF, a profibrogenic factor that
also induces a proangiogenic phenotype in HSCs [64]. PDGF induces
angiopoietin production in HSCs [63]. Leptin, a circulating peptide
hormone produced by the adipose tissue, has also been shown to
induce the production of VEGF and angiopoietin-1 in HSCs in vitro
[60]. Intercellular communication may also occur through the release
of microparticles, which are transported in the bloodstream to act on
distant cells. HSCs can secrete microparticles containing Hedgehog
ligands able to modulate gene expression in endothelial cells [65].
Another important way in whichmyofibroblasts promote angiogenesis
is the generation of hypoxia, through the production and deposition of
extracellular matrix. Hypoxia induces the HIF-dependent expression
of VEGF in hepatocytes and of VEGF, angiopoietin-1 and their respective
receptors in HSCs [51].

Newly formed blood vessels can supply tissues with proinflammatory
cytokines from the local and systemic circulation. These cytokines
maintain chronic inflammation in the liver, leading to fibrosis. This
fibrosis leads to angiogenesis, which in turn causesmore fibrosis, thereby
establishing a vicious circle. Angiogenesis can also lead to an increase in
interstitial fluid flow, because newly formed vessels may be leaky before
their stabilization. This interstitial fluid flow induces myofibroblast
differentiation [66]. Finally, endothelial cells from newly formed vessels
may have paracrine effects on myofibroblasts (see Fig. 2). Changes of
endothelial cells during angiogenesis may disrupt the subtle balance
between endothelial cells and pericytes. For instance, differentiated
sinusoidal endothelial cells promote the reversion of HSCs to a
quiescent state, whereas capillarized sinusoidal endothelial cells do not
[67]. Proangiogenic cytokines also have profibrogenic effects on
myofibroblasts. The HSC migration induced by hypoxia is mediated by
VEGF [68]. VEGF increases proliferation, extracellular matrix deposition
andmigration in HSCs [12,51,55,62,69]. The exposure of HSCs to placenta
growth factor activates the ERK pathway, and increases migration,
Table 1
Previously published proposed markers of hepatic stellate cell-derived myofibroblasts
(HSC-MFs) and portal myofibroblasts (PMFs).

Name (references)

HSC-MFs Reelin [91]
Cytoglobin [43]
α-2-macroglobulin [14]
Desmin [14]
Vascular cell adhesion molecule 1 [14]
Mannan-binding lectin serine peptidase [14]
Glial fibrillary acidic protein [14,17]
Pirin (iron-binding nuclear protein) [43]
Protein disulfide isomerase family A, member 4 [43]
Neural cell adhesion molecule 1 [14,17]
Retinol binding protein 1, cellular [92]

PMFs Fibulin 2 [14]
Thy-1 cell surface antigen[93]
Fibronectin 1 [14]
N CAM[17]
Gremlin [93,94]
Heat shock protein 1 [43]
Latexin [43]
Cofilin 1, non-muscle [43]
proliferation and cytoskeleton remodeling [70]. Neuropilin-1 (VEGF
co-receptor) increases HSC migration [71].

5. Myofibroblasts in liver regeneration

Liver regeneration induced by partial hepatectomy, a model of
normal liver tissue repair, is associated with myofibroblastic changes of
HSCs, including the loss of vitamin A content and the upregulation of
markers such as α-SMA, IL-6 and hepatocyte growth factor [72]. This
suggests that HSCs undergoing myofibroblastic differentiation are
involved in a regenerative response. Myofibroblastic HSCs can support
hepatocellular regeneration through the release of mitogens, such as
hepatocyte growth factor, pleiotrophin or epimorphin, and induction of
the delta-like 1 homolog [73]. It has also been shown that Foxf1
(a mesenchyme-specific transcription factor) haploinsufficiency in mice,
caused a defect in the myofibroblastic differentiation of HSCs, resulting
in abnormal liver regeneration [74]. However, HSCs have also been
reported to be negative regulators of hepatocyte regeneration. In one
study, this negative regulatory function was attributed to stimulation of
the 5-hydroxytryptamine 2B receptor on HSCs by serotonin, which
activates the expression of TGF-β1, a powerful suppressor of hepatocyte
proliferation [75]. In another study, HSC depletion was achieved in
ganciclovir-treated transgenic mice expressing the herpes simplex
virus-thymidine kinase gene driven by the mouse GFAP promoter.
HSC depletion was associated with a marked attenuation of fibrosis
and liver injury, in the carbon tetrachloride and bile duct ligation
models, suggesting that activated HSCs amplified liver damage [76].
Hepatocellular stellate cell crosstalk can also drive progression in
hepatocellular carcinoma, by generating a permissive inflammatory and
proangiogenicmicroenvironment, in particular [77]. Livermyofibroblasts,
probably of portal origin, interact with the ductular/progenitor cells to
promote their survival and proliferation via the hedgehog pathway
[35] and loss of the ectonucleotidase NTPDase2, an antiproliferative factor
expressed in normal fibroblasts [78]. Production of the Notch ligand
Jagged 1 by myofibroblasts promotes the biliary specification of hepatic
progenitor cells, directing their differentiation into cholangiocytes [79].
Myofibroblast-derived PDGF-BB also promotes survival signaling in
cholangiocarcinoma cells [80].

6. Deactivation of liver myofibroblasts

The deactivation of myofibroblasts is critical for the termination
of the reparative response and the restoration of normal tissue
structure. It is generally assumed that terminally differentiated
myofibroblasts undergo apoptosis when fibrosis regresses. Indeed,
some myofibroblasts have been observed to undergo apoptosis [81] or
senescence [82] during the regression of liver fibrosis. Inmyofibroblasts
derived from human lung fibroblast cells continuously stimulated with
serum, α-SMA levels have been shown to decrease with increasing cell
proliferation [83]. These changes, interpreted as dedifferentiation, are
associated with the downregulation of MyoD, a basic helix–loop–helix
transcription factor with a critical function in myogenic differentiation
and in TGF-β1-induced myofibroblast differentiation [83]. It has been
shown, with a hydrogel system, that the substrate modulus of valvular
myofibroblasts can be decreased, leading to their deactivation and
decreases in the levels of α-SMA stress fibers and proliferation,
these cells then being redirected to become dormant fibroblasts [84].
Likewise, changes in substrate stiffness have been shown to induce
a reversion of the myofibroblastic phenotype in human liver
myofibroblasts [85]. Culture studies have suggested that myofibroblastic
HSCs may revert to a more quiescent phenotype, characterized by the
loss of fibrogenic genes and the expression of adipogenic genes
[86]. The cre-loxP-based genetic labeling of myofibroblasts has been
used to show that, during recovery from carbon tetrachloride or
alcohol-induced liver fibrosis, myofibroblastic stellate cells may revert to
an inactive, although not entirely quiescent phenotype, with the capacity



Fig. 2.Myofibroblastic changes of hepatic stellate cells related to sinusoidal remodeling and angiogenesis in the fibrotic liver. In the fibrotic liver, an increasing number of HSCs wrap
around sinusoids, thereby contributing to the formation of a high-resistance, constricted sinusoidal vessel. At the cellular level, a number of soluble factors are involved in this pro-
cess, through autocrine and paracrine signaling between HSC-MFs and sinusoidal endothelial cells.
Reproduced with permission from Thabut & Shah, J Hepatol 2010 [95].
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to undergo rapid reactivation to regenerate myofibroblasts [87]. In
another study, the authors used single-cell PCR and genetic cell fate
tracking to show that about half the HSCs were deactivated, with
decreases in α-SMA and collagen I levels, after the cessation of carbon
tetrachloride treatment in mice. The deactivated HSCs obtained in this
model were also more responsive to profibrogenic stimulation than
fully quiescent HSCs [88]. In patients with chronic hepatitis C and a
sustained virological response (SVR), the analysis of paired pre- and
post-treatment liver biopsies showed that treatment led to the regression
of cirrhosis and a decrease in collagen content in most cases. Ductular
proliferation also decreased, but sinusoidal capillarization persisted, as
assessed by analyses of CD34andα-SMA, suggesting that thedeactivation
of HSCswas only partial [89]. However, in this study,α-SMA levels either
remained unchanged or increased, despite the regression of fibrosis,
suggesting that myofibroblastic differentiation may be irreversible once
it has progressed beyond a certain stage. Alternatively, it may depend
on themicroenvironment, a scenario supported by the fact that activated
HSCs revert to quiescencewhen coculturedwith differentiated sinusoidal
endothelial cells, but notwith capillarized cells [67]. In addition, the fate of
portal myofibroblasts needs to be addressed, to clarify the mechanisms
underlying fibrosis progression. The triggering ofmyofibroblast apoptosis
by pharmacological [90] or genetic [87] approaches could potentially
improve treatment, by causing fibrosis regression. Partial reversion of
the myofibroblastic phenotype may also lead to a favorable outcome,
but a potential threat remains in cases of subsequent injury. Complete
reversion to a quiescent phenotype is clearly the ultimate goal of
treatment, but it may be possible to achieve such reversion only in the
early stages of disease.
7. Conclusions

At least two populations of liver myofibroblasts, derived from
portal mesenchymal cells and hepatic stellate cells, accumulate in
the injured liver. We propose a model of liver tissue repair, in
which both myofibroblastic populations, each exposed to a different
microenvironment, expand and carry out specialist functions, in
scarring for PMFs and hepatocellular healing for HSC-MFs. These
specific features should be taken into account in the development of
antifibrotic drugs, to ensure the targeting of collagen cross-linking
or of fully differentiated myofibroblasts, rather than stages of
myofibroblastic differentiation, which may be beneficial for the
regeneration of liver epithelial cells. Strategies for restoring the
normal, quiescent phenotype of myofibroblast precursors should
also be considered.
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