59 research outputs found

    A novel homozygous R764H mutation in crumbs homolog 1 causes autosomal recessive retinitis pigmentosa.

    Get PDF
    PURPOSE: Retinitis pigmentosa (RP; MIM 268000) is a hereditary disease characterized by poor night vision and progressive loss of photoreceptors, eventually leading to blindness. This degenerative process primarily affects peripheral vision due to the loss of rods. Autosomal recessive RP (arRP) is clinically and genetically heterogeneous. It has been associated with mutations in different genes, including CRB1 (crumbs homolog 1). The aim of this study was to determine the causative gene in a Tunisian patient with arRP born to non-consanguineous parents. METHODS: Four accessible family members were included. They underwent full ophthalmic examination with best-corrected Snellen visual acuity, fundus photography and fluorescein angiography. Haplotype analysis was used to evaluate homozygosity in the family to 20 arRP loci. All exons and intron-exon junctions of candidate genes not excluded by haplotype analysis were PCR amplified and directly sequenced. RESULTS: The proband was a 43-year-old female patient. Best-corrected visual acuity was 20/63 (right eye) and 20/80 (left eye). Visual loss began during the third decade. Funduscopic examination and fluorescein angiography revealed typical advanced RP changes with bone spicule-like pigment deposits in the posterior pole and the midperiphery along with retinal atrophy, narrowing of the vessels, and waxy optic discs. Haplotype analysis revealed homozygosity with microsatellite markers D1S412 and D1S413 on chromosome 1q31.3. These markers flanked CRB1. Our results excluded linkage of all the other arRP loci/genes tested. Sequencing of the 12 coding exons and splice sites of CRB1 disclosed a homozygous missense mutation in exon 7 at nucleotide c. 2291G>A, resulting in an arginine to histidine substitution (p.R764H). CONCLUSIONS: R764H is a novel mutation associated with CRB1-related arRP. Previously, an R764C mutation was reported. Extending the mutation spectrum of CRB1 with additional families is important for genotype-phenotype correlations and characterization of the scope of mutation

    Identifying mutations in Tunisian families with retinal dystrophy.

    Get PDF
    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population

    Phenotypic Progression of Stargardt Disease in a Large Consanguineous Tunisian Family Harboring New ABCA4 Mutations.

    Get PDF
    To assess the progression of Stargardt (STGD) disease over nine years in two branches of a large consanguineous Tunisian family. Initially, different phenotypes were observed with clinical intra- and interfamilial variations. At presentation, four different retinal phenotypes were observed. In phenotype 1, bull's eye maculopathy and slight alteration of photopic responses in full-field electroretinography were observed in the youngest child. In phenotype 2, macular atrophy and yellow white were observed in two brothers. In phenotype 3, diffuse macular, peripapillary, and peripheral RPE atrophy and hyperfluorescent dots were observed in two sisters. In phenotype 4, Stargardt disease-fundus flavimaculatus phenotype was observed in two cousins with later age of onset. After a progression of 9 years, all seven patients displayed the same phenotype 3 with advanced stage STGD and diffuse atrophy. WES and MLPA identified two <i>ABCA4</i> mutations M1: c.[(?_4635)_(5714+?)dup; (?_6148)_(6479_+?) del] and M2: c.[2041C>T], p.[R681 <sup>∗</sup> ]. In one branch, the three affected patients had M1/M1 causal mutations and in the other branch the two affected patients had M1/M2 causal mutations. After 9-year follow-up, all patients showed the same phenotypic evolution, confirming the progressive nature of the disease. Genetic variations in the two branches made no difference to similar end-stage disease

    Phenotype of three consanguineous Tunisian families with early-onset retinal degeneration caused by an R91W homozygous mutation in the RPE65 gene.

    Get PDF
    PURPOSE: To identify the genetic defect, and to phenotype, three consanguineous Tunisian families presenting with early-onset retinal degeneration (EORD). METHODS: All accessible family members were included. They underwent blood sampling and ophthalmological examination including, when possible, full-field ERG and pupillometry. A genome-wide linkage analysis was initiated. Mutation analysis of the RPE65 gene within the linked interval was performed by bi-directional sequencing. RESULTS: Eleven out of 53 examined members were clinically affected with an EORD. Linkage analysis revealed a maximal lod score of 4.02 (theta=0.1) for the marker D1S207 on 1p31. Mutational screening of the RPE65 gene identified a homozygous R91W mutation co-segregating with the disease in all affected individuals. Eleven homozygotes had nystagmus and acuities ranging from CF to NLP. Two retinal patterns were identified: pattern 1 presented mid-peripheral deep white dot deposits and virtually no clumped pigmentation, whereas pattern 2 showed mid-peripheral pigmented clumps without any white deposits. Homozygotes had no detectable full-field ERG and an abnormal pupillary light reflex. Eleven heterozygotes had normal visual function. CONCLUSION: We identified and characterised an endemic form of early onset rod-cone dystrophy in a consanguineous population from northeastern Tunisia, due to the prevalence of a single RPE65 mutation. Two funduscopic patterns were identified: white dot deposits in earlier stages and clumped pigment in later stages

    Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.

    Get PDF
    BACKGROUND: RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice. METHODS AND FINDINGS: Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease. CONCLUSIONS: By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65(-/-) mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose

    Spectral domain optical coherence tomography in patients after successful management of postoperative endophthalmitis following cataract surgery by pars plana vitrectomy.

    Get PDF
    BACKGROUND: Acute severe postoperative endophthalmitis may lead to severe vision loss. The aim of this study was the analysis of macular microstructure imaged by spectral domain optical coherence tomography in patients after pars plana vitrectomy due to postcataract endophthalmitis. METHODS: A cross sectional study was carried out in 17 patients who had cataract surgery in both eyes and underwent unilateral pars plana vitrectomy due to postcataract endophthalmitis. Postoperative best corrected visual acuity was determined in both eyes. Evaluation of macular thickness, macular volume, peripapillary retinal nerve fiber layer thickness and choroidal thickness using enhanced depth imaging technique was performed by spectral domain optical coherence tomography. The measurements obtained in the operated eye were compared to the fellow eye by Wilcoxon matched pair test. Correlation test was performed by Spearman rank order. RESULTS: A mean postoperative best corrected visual acuity of 63 +/- 30 ETDRS letters versus 75 +/- 21 letters was achieved in the study and fellow eyes, respectively, after a mean of 5.3 +/- 4.5 months (p = 0.1). The mean macular thickness was 320.6 +/- 28.8 mum SD in the study eyes compared to 318.4 +/- 18.8 mum in the fellow eyes (p = 0.767). No differences were noted in macular volume (p = 0.97) and in peripapillary retinal nerve fiber layer thickness (p = 0.31). Choroidal thickness was significantly lower in the study eyes compared to the fellow eyes (p = 0.018). Epiretinal membrane was found in 7 eyes after endophthalmitis, while in the fellow eyes only in 3 cases (p = 0.13, Fisher's exact test). CONCLUSION: Choroidal thickness decreased significantly after endophthalmitis, but there was no functional correlation with the changes in choroidal microstructure. The development of epiretinal membranes may be associated with either vitrectomy or endophthalmitis in the history. Absence of other significant structural and morphological findings shows that successful treatment may guarantee good clinical results even in long term after this severe postoperative complication

    Bax-Induced Apoptosis in Leber's Congenital Amaurosis: A Dual Role in Rod and Cone Degeneration

    Get PDF
    Pathogenesis in the Rpe65−/− mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65−/− mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65−/− mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors

    Macular Dystrophy with Bilateral Macular Telangiectasia Related to the CYP2U1 Pathogenic Variant Assessed with Multimodal Imaging Including OCT-Angiography.

    Get PDF
    We report the case of a neurologically asymptomatic young boy presenting with an unusual phenotype of CYP2U1 related macular dystrophy associating bilateral macular telangiectasia (MacTel) and fibrotic choroidal neovascularization (CNV), assessed with complete multimodal imaging including optical coherence tomography angiography (OCT-A). A twelve-year-old boy from a non-consanguineous family complained of bilateral progressive visual loss and photophobia. The best-corrected visual acuity was 2/10 on the right eye and 3/10 on the left eye. Fundus examination showed central pigmented fibrotic macular scar and yellowish punctuate deposits in both eyes. En face OCT-A detected typical macular telangiectasia (MacTel) in both eyes with dilated telangiectatic capillaries in the deep capillary plexus associated with vascular anomalies in the superficial and deep capillary plexus. Typical hypo-reflective cavities were observed within the inner foveal layers on structural OCT. En face OCT-A also confirmed the presence of bilateral inactive CNV within the fibrotic scars, showing high-flow vascular network at the level of the subretinal hyperreflective lesions. Whole exome sequencing identified a known homozygous pathogenic variant in CYP2U1 gene (c.1168C > T, p.Arg390*), which is a disease-causing mutation in autosomal recessive spastic paraplegia type 56 (SPG56). The neurological examination was normal, and electromyography and brain magnetic resonance imaging were unremarkable as well. Macular dystrophy can be the first manifestation in SPG56. A particular phenotype with MacTel was observed, and neovascular complications are possible. CYP2U1 should be included in the panels of genes tested for macular dystrophies, especially in the presence of MacTel and/or neurological manifestations

    Different Phenotypes in Pseudodominant Inherited Retinal Dystrophies.

    No full text
    Retinal dystrophies (RD) are a group of Mendelian disorders caused by rare genetic variations leading to blindness. A pathogenic variant may manifest in both dominant or recessive mode and clinical and genetic heterogeneity makes it difficult to establish a precise diagnosis. In this study, families with autosomal dominant RD in successive generations were identified, and we aimed to determine the disease's molecular origin in these consanguineous families. Whole exome sequencing was performed in the index patient of each family. The aim was to determine whether these cases truly represented examples of dominantly inherited RD, or whether another mode of inheritance might be applicable. Six potentially pathogenic variants in four genes were identified in four families. In index patient with enhanced S-cone syndrome in F1, we identified a new digenetic combination: a heterozygous variant p.[G51A];[=] in RHO and a homozygous pathogenic variant p.[R311Q];[R311Q] in NR2E3. Helicoid subretinal fibrosis associated with recessive NR2E3 variant p.[R311Q];[R311Q] was identified in F2. A new frameshift variant c.[105delG];[105delG] in RDH12 was found in F3 with cone-rod dystrophy. In F4, the compound heterozygous variants p.[R964 <sup>*</sup> ];[W758 <sup>*</sup> ] were observed in IMPG2 with a retinitis pigmentosa (RP) phenotype. We showed that both affected parents and the offspring, were homozygous for the same variants in all four families. Our results provide evidence that in consanguineous families, autosomal recessive can be transmitted as pseudodominant inheritance in RD patients, and further extend our knowledge of pathogenic variants in RD genes
    corecore