66 research outputs found

    Dynamic evaluation of circulating mirna profile in egfr‐ mutated nsclc patients treated with egfr‐tkis

    Get PDF
    Background: Resistance to EGFR‐TKIs constitutes a major challenge for the management of EGFR‐mutated NSCLC, and recent evidence suggests that deregulation of specific microRNAs (miRNAs) may influence resistance to targeted agents. In this retrospective study, we explored the role of specific plasmatic miRNAs (miR‐21, miR‐27a and miR‐181a) as a surrogate for predicting EGFR‐TKI performance in EGFR‐mutated NSCLC patients. Methods: Plasma samples of 39 advanced EGFR‐mutated NSCLC patients treated with EGFR‐TKIs were collected at different points in time and miRNA levels were assessed by RT‐PCR. Results: Higher basal values of miR‐21 were reported in patients who achieved a partial/complete response (PR/CR) compared to those with stability/progression of disease (SD/PD) (p = 0.011). Along the same line, patients who experienced a clinical benefit lasting at least six months displayed higher basal levels of circulating miR‐21 (p = 0.039). However, dynamic evaluation of miRNA values after two months from the start of EGFR‐TKI treatment showed that patients who experienced SD had an increase in miR‐21 levels (Fold Change [FC] = 2.6) compared to patients achieving PR/CR (p = 0.029). The same tendency was observed for miR‐27a (FC = 3.1) and miR‐181a (FC = 2.0), although without reaching statistical significance. Remarkably, preclinical studies showed an increase in miR‐21 levels in NSCLC cells that became resistant after exposure to EGFR‐TKIs. Conclusions: Our study provides interesting insights on the role of circulating miRNAs, in particular miR‐21, and their dynamic change over time in predicting EGFR‐TKI response in EGFR‐mutated NSCLC

    3-(6-Phenylimidazo [2,1-b][1,3,4]thiadiazol-2-yl)-1HIndole derivatives as new anticancer agents in the treatment of pancreatic ductal adenocarcinoma

    Get PDF
    A new series of imidazo[2,1-b][1,3,4]thiadiazole derivatives was efficiently synthesized and screened for their in vitro antiproliferative activity on a panel of pancreatic ductal adenocarcinoma (PDAC) cells, including SUIT-2, Capan-1 and Panc-1. Compounds 9c and 9l, showed relevant in vitro antiproliferative activity on all three pre-clinical models with half maximal inhibitory concentration (IC50) ranging from 5.11 to 10.8 μM, while the compounds 9e and 9n were active in at least one cell line. In addition, compound 9c significantly inhibited the migration rate of SUIT-2 and Capan-1 cells in the scratch wound-healing assay. In conclusion, our results will support further studies to increase the library of imidazo [2,1-b][1,3,4] thiadiazole derivatives for deeper understanding of the relationship between biological activity of the compounds and their structures in the development of new antitumor compounds against pancreatic diseases

    PO-042 Targeting hypoxic pancreatic cancer cells with glucose conjugated lactate dehydrogenase inhibitor NHI-Glc-2

    Get PDF
    Introduction Pancreatic ductal adenocarcinoma (PDAC) is an abysmal disease with a 5 year survival rate of merely 8%. The tumour microenvironment is one of the factors contributing to PDAC chemoresistance. More specifically, the hypoxic tumour cores and the metabolic switch to aerobic glycolysis (e.g. the Warburg effect), contribute to the lack of drug response. Interestingly, two glycolysis components glucose transporter 1 (GLUT-1) and lactate dehydrogenase A (LDH-A) are overexpressed in PDAC. The latter, LDH-A, is also correlated with prognosis in metastatic PDAC. N-Hydroxyindole-based LDH-A inhibitors (NHI-1 and NHI-2) have shown a synergistic effect in hypoxic PDAC cells when combined with gemcitabine. A glucose conjugated NHI-Glc-2 was designed to exploit the GLUT-1 overexpression in PDAC cells and in the present study we evaluated whether this novel compound further improved the pharmacological effect of LDH-A inhibitors. Material and methods The effect of NHI-Glc-2 on cell growth is tested in our primary PDAC cancer cell cultures, characterised for their hypoxic signature and LDH-A/GLUT-1 expression levels by next-generation sequencing. Inhibition of cell and tumour growth was evaluated by the SRB assay, 3D spheroid-cultures and with an orthotopic bioluminescent in vivo model. Additionally, LDH-A enzyme activity inhibition and the effect on the glycolytic rate by NHI-Glc-2 were assessed by spectrophotometry and with the Seahorse XF analyzer, respectively. Results and discussions NHI-Glc-2 is capable of inhibiting PDAC cell growth in, especially in hypoxia, in nanomolar range and shows a synergistic effect with gemcitabine. In 3D cultures NHI-Glc-2 disrupts spheroid integrity, and preliminary in vivo studies show promising results. Conclusion Lactate dehydrogenase A is a viable target in PDAC, and the novel LDH-A inhibitor showed improved pharmacological effect in normoxic and hypoxic PDAC cells compared to NHI-1 and NHI-2. Moreover, this compound displays a synergistic cytotoxic activity with gemcitabine, offering an innovative tool in hypoxic tumours

    PO-278 Assessment of the influence of stellate cells on primary pancreatic cancer cell growth and drug resistance in a spheroid model: MET inhibitors to the rescue

    Get PDF
    Introduction Pancreatic ductal adenocarcinoma has one of the lowest 5 year survival rates among all cancers and it is going to be the 2nd leading cause of cancer death in 2030. Drug resistance and early metastasis are among the main causes of this dismal prognosis and tumour microenvironment may give a considerable contribution to this aggressive behaviour. Pancreatic stellate cells (PSCs) are the main source of cancer-associated fibroblasts in stroma, and are suspected to induce drug resistance by paracrine secretion of hepatocyte growth factor (HGF) and activation of the MET receptor in cancer cells. Material and methods We first examined the effect of human PSC conditioned medium on the growth and drug resistance of six different primary cell cultures isolated from PDAC patients by sulforhodamine B (SRB) assay growing as monolayers. Further, we developed a spheroid 3D-co-culture with PDAC5-SSEA4 and immortalised or primary PSC cells and examined the effects of different drugs by luciferase assay, immunofluoresence and confocal microscopy. Results and discussions Conditioned medium of stimulated PSC cells, i.e., primed with PDAC conditioned medium, gave growth advantage to different primary PDAC cells and made them several times more resistant to gemcitabine and oxaliplatin. PDAC5-SSEA4/PSC spheroids were much more resistant to gemcitabine and oxaliplatin compared to PDAC5-SSEA4 spheroids. However, MET inhibitors such as tivantinib and PHA-665752 were equally effective in homo and heterospheroids. Of note, immortalised and primary PSC cells had similar influences on the behaviour of PDAC cells in spheroids. Conclusion We successfully developed a 3D-spheroid model to evaluate the interaction of primary PDAC cells with PSCs. Pharmacological studies provided evidence that spheroids containing PSCs are much more resistant to cytotoxic drugs. Conversely MET inhibitors seem to be valuable tools to overcome the drug resistance of PDAC cells caused by the presence of PSC cells

    Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds

    Get PDF
    Background: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. Methods: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. Results: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. Conclusions: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors

    Fate of the H-NS–Repressed bgl Operon in Evolution of Escherichia coli

    Get PDF
    In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS–repressed locus is the bgl (aryl-β,D-glucoside) operon of E. coli. This locus is “cryptic,” as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli

    Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma

    Get PDF
    Introduction: Therapeutic options for diffuse malignant peritoneal mesothelioma (DMPM) are limited to surgery and locoregional chemotherapy. Despite improvements in survival rates, patients eventually succumb to disease progression. We investigated splicing deregulation both as molecular prognostic factor and potential novel target in DMPM, while we tested modulators of SF3b complex for antitumor activity. Methods: Tissue-microarrays of 64 DMPM specimens were subjected to immunohistochemical assessment of SF3B1 expression and correlation to clinical outcome. Two primary cell cultures were used for gene expression profiling and in vitro screening of SF3b modulators. Drug-induced splicing alterations affecting downstream cellular pathways were detected through RNA sequencing. Ultimately, we established bioluminescent orthotopic mouse models to test the efficacy of splicing modulation in vivo. Results: Spliceosomal genes are differentially upregulated in DMPM cells compared to normal tissues and high expression of SF3B1 correlated with poor clinical outcome in univariate and multivariate analysis. SF3b modulators (Pladienolide-B, E7107, Meayamycin-B) showed potent cytotoxic activity in vitro with IC50 values in the low nanomolar range. Differential splicing analysis of Pladienolide-B-treated cells revealed abundant alterations of transcripts involved in cell cycle, apoptosis and other oncogenic pathways. This was validated by RT-PCR and functional assays. E7107 demonstrated remarkable in vivo antitumor efficacy, with significant improvement of survival rates compared to vehicle-treated controls. Conclusions: SF3B1 emerged as a novel potential prognostic factor in DMPM. Splicing modulators markedly impair cancer cell viability, resulting also in potent antitumor activity in vivo. Our data designate splicing as a promising therapeutic target in DMPM

    Capturing wheat phenotypes at the genome level

    Get PDF
    Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence

    Analysis of the Plant bos1 Mutant Highlights Necrosis as an Efficient Defence Mechanism during D. dadantii/Arabidospis thaliana Interaction

    Get PDF
    Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection
    corecore