2 research outputs found

    On the use of energy decomposition analyses to unravel the origin of the relative stabilities of isomers

    Get PDF
    Structural isomers are molecules that have the same number and type of atoms but arranged in different manner. The isomerization energy is the energy difference between two isomers, i.e. the energy cost corresponding to the transformation of one isomer into another. In this thesis, the PhD student has focused on isomers that can be built from the same fragments, but simply connecting them differently, with a new methodology called "turn-upside-down." Basically one starts with the same two fragments and they are connected in different way to build the two isomers. Later, the energies involved in the bonding between the fragments are studied by an energy decomposition analysis in order to find the reason for the difference in stability between the two isomers. The computational results obtained have allowed us to justify the energy of isomerization of organic or inorganic or organometallic compoundsIsòmers estructurals són molècules que presenten el mateix nombre i tipus d’àtoms, però ordenats de diferent manera. L’energia d’isomerització és la diferència d’energia entre dos isòmers, o sigui, el cost energètic corresponent a la transformació d’un isòmer a l’altre. En aquesta tesi, el doctorand s’ha centrat en isòmers que es poden construir a partir dels mateixos fragments, però simplement unint-los de diferent manera, amb una nova metodologia anomenada “turn-upside-down”. Bàsicament es parteix dels mateixos dos fragments que unim de diferent manera per construir els dos isòmers. Posteriorment, les energies involucrades en la unió entre els fragments s’estudien amb una anàlisi de descomposició de l’energia per tal de saber la raó de la diferència d’estabilitat entre els dos isòmers. Els resultats computacionals obtinguts han permès justificar l’energia d’isomerització de compostos tant orgànics com inorgànics o organometàl·lic

    Complexes of adamantine-based group 13 Lewis acids and superacids: bonding analysis and thermodynamics of hydrogen splitting

    No full text
    The electronic structure and chemical bonding in donor-acceptor complexes formed by group 13 element adamantine and perfluorinated adamantine derivatives EC9Rʹ15 (E = B, Al; R´= H, F) with Lewis bases XR3 and XC9H15 (X=N, P; R= H, CH3) have been studied using energy decomposition analysis (EDA) at the BP86/TZ2P level of theory. Larger stability of complexes with perfluorinated adamantine derivatives is mainly due to better electrostatic and orbital interactions. Deformation energies of the fragments and Pauli repulsion are of less importance, with exception for the boron-phosphorus complexes. The MO analysis reveals that LUMO energies of EC9Rʹ15 significantly decrease upon fluorination (by 4.7 and 3.6 eV for E = B and Al, respectively) which results in an increase of orbital interaction energies by 27-38 (B) and 15-26 (Al) kcal mol-1. HOMO energies of XR3 increase in order PH3 < NH3 < PMe3 < PC9H15 < NMe3 < NC9H15. For the studied complexes, there is a linear correlation between the dissociation energy of the complex and the energy difference between HOMO of the donor and the LUMO of the acceptor molecules. The fluorination of the Lewis acid significantly reduces standard enthalpies of the heterolytic hydrogen splitting H2 + D + A = [HD]+ + [HA]-. Analysis of the several types of the [HD]+ ··[HA]- ion pair formation reveals that orientation with additional H···F interactions is the most favorable energetically. Taking into account the ion pair formation, hydrogen splitting is predicted to be highly exothermic in case of the perfluorinated derivatives. Thus, fluorinated adamantine-based Lewis superacids are attractive synthetic targets and good candidates for the construction of the donor-acceptor cryptandsThis work was financially supported by St. Petersburg State University research grant 12.50.1194.2014. Excellent service of the Centre de Serveis Científiics i Acadèmmics de Catalunya (CESCA) and computer cluster at St. Petersburg State University is gratefully acknowledged. J.P. thanks the Netherlands Organization for Scientific Research (NWO-CW, NWO-EW, NWO-ALW) for financial support. M. S. thanks the following organizations for financial support: the Spanish government (MINECO, project number CTQ2014-54306-P), the Generalitat de Catalunya (project number 2014SGR931, ICREA Academia 2014 prize for excellence in research, and Xarxa de Referència en Química Teòrica i Computacional), and the FEDER fund (European Fund for Regional Development) for the grant UNGI10-4E-80
    corecore