6 research outputs found

    Fermeture spontanée d’un trou maculaire post traumatique

    Get PDF
    RESUMELes trous maculaires post-traumatiques sont, chez l'enfant, la première cause de trou maculaire, contrairement à celles de l'adulte. Nous rapportons le cas d'un enfant de 13 ans victime d'un traumatisme contusif de l'œil gauche occasionnant un trou fovéolaire de pleine épaisseur avec baisse de son acuité visuelle. Une surveillance régulière durant 6 mois appuyée par l'OCT à objectiver la fermeture du trou maculaire accompagnant une récupération fonctionnelle.La fermeture spontanée de ces TMT n’est pas rare (50% des cas), et surviendrait dans les 4 premiers mois après le traumatisme. Le mécanisme de fermeture reste débattu. Cependant, une période d'observation de 4 à 6 mois est recommandée en particulier s’il existe des facteurs de bon pronostic (Patients jeunes, petits trous avec une bonne acuité visuelle, une adhésion postérieure du vitré aux bords du TMT) en raison de la possibilité de résolution spontanée.ABSTRACTPost-traumatic macular holes are the leading cause of macular hole in children. We report a case of a contusive eye trauma in 13-year-old child causing a full-thickness foveolar hole with reduced visual acuity. Regular monitoring by OCT for 6 months objectify the closure of the macular hole with a functional recovery. Spontaneous closure of these post-traumatic macular holes is common (50% of cases), and would occur within the first 4 months after the trauma. The closing mechanism remains debated. However, an observation period of 4 to 6 months is recommended in particular if there are good prognostic factors (young patients, small holes with good initial visual acuity, posterior adhesion of the vitreous to the edges of the TMT)

    Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment

    Full text link
    Consumer acceptance of dried apricots depends on them having an intense orange color, a gummy texture, and a characteristic flavor. In addition, the growing demand for healthy and nutritive foods has increased the interest in this product, as apricot fruits can be considered a good source of phytochemicals, such as polyphenols, carotenoids, and vitamins. Microwave energy may be an interesting drying method, an alternative to conventional sun or hot air drying, with which to obtain dried apricots with good sensorial, nutritive, and functional properties in a shorter time. This paper aims to evaluate the effect of sulfur pretreatment and the drying process (hot air and/or microwaves) on the color, mechanical properties, and ascorbic acid, vitamins A and E, and total carotenoid content of apricot. The obtained results mean that the use of microwave energy, either in combination or not with mild-hot air, may be recommended to obtain dried apricots, without needing to apply sulfur pretreatment.The authors wish to thank the Education and Science Ministry and the European Regional Development Fund (FEDER) for the financial support given throughout the Project AGL2005-05994.García Martínez, EM.; Igual Ramo, M.; Martín-Esparza, M.; Martínez Navarrete, N. (2013). Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food and Bioprocess Technology. 6(11):3247-3255. https://doi.org/10.1007/s11947-012-0988-1S32473255611Adams, J. B. (1997). Food additive–additive interactions involving sulphur dioxide and ascorbic and nitrous acids: A review. Food Chemistry, 59(3), 401–409.Akin, E. B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot Prunus armeniaca L. varieties. Food Chemistry, 107, 939–948.AOAC (2000) Official methods of analysis (17th ed.). Gaithersburg: AOAC.Azodanlou, R., Darbellay, C., Luisier, J., Villettaz, J., & Amadò, R. (2003). Development of a model for quality assessment of tomatoes and apricots. LWT- Food Science and Technology, 36(2), 223–233.Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. Lebensmittel-Wissenschaft und Technologie, 38, 471–477.Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3), 281–287.Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102(3), 966–975.El Halouat, A., & Labuza, T. P. (1987). Air drying characteristics of apricots. Journal of Food Science, 52, 342–345.Femenia, A., Sánchez, E. S., Simal, S., & Rosselló, C. (1998). Developmental and ripening-related effects on the cell wall of apricot (Prunus armeniaca) fruit. Journal of the Science of Food and Agriculture, 77, 487–493.Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38, 353–367.Glüçü, K., Altun, M., Ozyurek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41(S1), 76–85.Gregory, I. F. (1993). Vitamins. In O. Fennema (Ed.), Food chemistry (3rd ed., pp. 531–616). New York: Marcel Dekker.Halliwell, B. (1994). Free radical antioxidants in human disease. Curiosity, cause or consequence. Lancet, 344, 72–74.Jiménez, M., Martínez-Tomé, M., Egea, I., Romojaro, F., & Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot. European Food Research and Technology, 227(1), 125–134.Kamişli, F., & Karatas, F. (2009). Effects of sulphurisation on vitamins (A, C and E) and malondialdehyde in apricots. International Journal of Food Science and Technology, 44, 987–993.Karabulut, I., Topcu, A., Duran, A., Turan, S., & Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armeniaca L.). Lebensmittel-Wissenschaft und Technologie, 40, 753–758.Karatas, F., & Kamişli, F. (2007). Variations of vitamins (A, C and E) and MDA in apricots dried in IR and microwave. Journal of Food Engineering, 78, 662–668.Kevers, C., Falkowski, M., Tabart, J., Defraigne, J. O., Dommes, J., & Pincemail, J. (2007). Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry, 55, 8596–8603.Krinsky, N. I. (1989). Carotenoids and cancer in animal models. Journal of Nutrition, 119, 123–126.Kritchevsky, D. (1992). Antioxidant vitamins in the prevention of cardiovascular disease. Nutrition Today, 27, 30–33.Leccese, A., Bartolini, S., & Viti, R. (2008). Total antioxidant capacity and phenolics content in fresh apricots. Acta Alimentaria, 37(1), 65–76.Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577–1587.Lo Voi, A., Impembo, M., Fasanaro, G., & Castaldo, D. (1994). Chemical characterization of apricot puree. Journal of Food Composition and Analysis, 8, 78–85.Madrau, M. A., Piscopo, A., Sanguinetti, A. M., Del Caro, A., Poiana, M., Romeo, F. V., et al. (2009). Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. European Food Research and Technology, 228, 441–448.Mahmutoğlu, T., Saygi, Y. B., Borcakli, M., & Özay, G. (1996). Effects of pretreatment–drying method combinations on the drying rates, quality and storage stability of apricots. Lebensmittel-Wissenschaft und Technologie, 29, 118–121.Meléndez-Martínez A.J., Vicario I.M., Heredia F.J. (2004) Estabilidad de los pigmentos carotenoides en los alimentos. Archivos Latinoamericanos de Nutrición (ALAN), publicación oficial de la Sociedad Latinoamericana de Nutrición (SLAN), 54(2), 149–154.Mezzetti, A., Lapenna, D., Pierdomenico, S. D., Calafiore, A. M., Constantini, F., Riario-Sforza, G., et al. (1995). Vitamin E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis, 112, 91–99.Mir, M. A., Hussain, P. R., Fouzia, S., & Rather, A. H. (2009). Effect of sulphiting and drying methods on physicochemical and sensorial quality of dried apricots during ambient storage. International Journal of Food Science and Technology, 44, 1157–1166.Munzuroğlu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212.Olives, A. I., Cámara, M., Sánchez, M. C., Fernández, V., & López, M. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336.Ozkan, M., & Cemeroglu, B. (2002). Desulfiting dried apricots by hydrogen peroxide. Journal of Food Science, 67, 1631–1635.Piga, A., Poiana, M., Pinna, I., Agabbio, M., & Minciane, A. (2004). Drying performance of five Italian apricot cultivars. Sciencies des Aliments, 24, 247–259.Roos, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1, 163–180.Ruiz, D., Egea, J., Gil, M. I., & Tomás-Barberán, F. A. (2005). Carotenoids from new apricot Prunus armeniaca L. varieties and their relationship with flesh and skin colour. Journal of Agricultural and Food Chemistry, 53, 6368–6374.Ryley, J., & Kajda, P. (1994). Vitamins in thermal processing. Food Chemistry, 49(2), 119–129.Sharma, G., & Prasad, S. (2001). Drying of garlic (Allium sativum) cloves by microwave–hot air combination. Journal of Food Engineering, 50, 99–105.Stryer, L. (1995). Biochemistry (4th ed., pp. 452–455). New York: W.H. Freeman and Company.Torreggiani D., Forni D., Maestrelli A., Quadri F. (1998). Influence of osmotic dehydration on texture and pectic composition of kiwifruit slices. In: Proceedings of the 11th International Drying Symposium (IDS098), vol. A, pp. 930–937, 19–22 August 1998, Halkidiki, Greece.Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—A review. Biosystems Engineering, 98, 1–16.Velu, V., Nagender, A., Prabhakara Rao, P. G., & Rao, D. G. (2006). Dry milling characteristics of microwave dried maize grains. Journal of Food Engineering, 74(1), 30–36.Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.Ziegler, R. G. (1989). A review of epidemiologic evidence that carotenoids reduce the risk of cancer. Journal of Nutrition, 119, 116–122
    corecore