12 research outputs found

    Changing facial phenotype in Cohen syndrome:towards clues for an earlier diagnosis

    No full text
    <p>Cohen syndrome (CS) is a rare autosomal recessive condition caused by mutations and/or large rearrangements in the VPS13B gene. CS clinical features, including developmental delay, the typical facial gestalt, chorioretinal dystrophy (CRD) and neutropenia, are well described. CS diagnosis is generally raised after school age, when visual disturbances lead to CRD diagnosis and to VPS13B gene testing. This relatively late diagnosis precludes accurate genetic counselling. The aim of this study was to analyse the evolution of CS facial features in the early period of life, particularly before school age (6 years), to find clues for an earlier diagnosis. Photographs of 17 patients with molecularly confirmed CS were analysed, from birth to preschool age. By comparing their facial phenotype when growing, we show that there are no special facial characteristics before 1 year. However, between 2 and 6 years, CS children already share common facial features such as a short neck, a square face with micrognathia and full cheeks, a hypotonic facial appearance, epicanthic folds, long ears with an everted upper part of the auricle and/or a prominent lobe, a relatively short philtrum, a small and open mouth with downturned corners, a thick lower lip and abnormal eye shapes. These early transient facial features evolve to typical CS facial features with aging. These observations emphasize the importance of ophthalmological tests and neutrophil count in children in preschool age presenting with developmental delay, hypotonia and the facial features we described here, for an earlier CS diagnosis.</p>

    Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test

    No full text
    International audienceThe current standard of care for diagnosis of severe intellectual disability (ID) and epileptic encephalopathy (EE) results in a diagnostic yield of ~50%. Affected individuals nonetheless undergo multiple clinical evaluations and low-yield laboratory tests often referred to as a 'diagnostic odyssey'. This study was aimed at assessing the utility of clinical whole-exome sequencing (WES) in individuals with undiagnosed and severe forms of ID and EE, and the feasibility of its implementation in routine practice by a small regional genetic center. We performed WES in a cohort of 43 unrelated individuals with undiagnosed ID and/or EE. All individuals had undergone multiple clinical evaluations and diagnostic tests over the years, with no definitive diagnosis. Sequencing data analysis and interpretation were carried out at the local molecular genetics laboratory. The diagnostic rate of WES reached 32.5% (14 out of 43 individuals). Genetic diagnosis had a direct impact on clinical management in four families, including a prenatal diagnostic test in one family. Our data emphasize the clinical utility and feasibility of WES in individuals with undiagnosed forms of ID and EE and highlight the necessity of close collaborations between ordering physicians, molecular geneticists, bioinformaticians and researchers for accurate data interpretation

    Exome sequencing identifies pathogenic variants of VPS13B in a patient with familial 16p11.2 duplication

    No full text
    BACKGROUND: The recurrent microduplication of 16p11.2 (dup16p11.2) is associated with a broad spectrum of neurodevelopmental disorders (NDD) confounded by incomplete penetrance and variable expressivity. This inter- and intra-familial clinical variability highlights the importance of personalized genetic counselling in individuals at-risk. CASE PRESENTATION: In this study, we performed whole exome sequencing (WES) to look for other genomic alterations that could explain the clinical variability in a family with a boy presenting with NDD who inherited the dup16p11.2 from his apparently healthy mother. We identified novel splicing variants of VPS13B (8q22.2) in the proband with compound heterozygous inheritance. Two VPS13B mutations abolished the canonical splice sites resulting in low RNA expression in transformed lymphoblasts of the proband. VPS13B mutation causes Cohen syndrome (CS) consistent with the proband’s phenotype (intellectual disability (ID), microcephaly, facial gestalt, retinal dystrophy, joint hypermobility and neutropenia). The new diagnosis of CS has important health implication for the proband, provides the opportunity for more meaningful and accurate genetic counselling for the family; and underscores the importance of longitudinally following patients for evolving phenotypic features. CONCLUSIONS: This is the first report of a co-occurrence of pathogenic variants with familial dup16p11.2. Our finding suggests that the variable expressivity among carriers of rare putatively pathogenic CNVs such as dup16p11.2 warrants further study by WES and individualized genetic counselling of families with such CNVs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-016-0340-0) contains supplementary material, which is available to authorized users

    Novel VPS13B Mutations in Three Large Pakistani Cohen Syndrome Families Suggests a Baloch Variant with Autistic-Like Features

    Get PDF
    BACKGROUND: Cohen Syndrome (COH1) is a rare autosomal recessive disorder, principally identified by ocular, neural and muscular deficits. We identified three large consanguineous Pakistani families with intellectual disability and in some cases with autistic traits. METHODS: Clinical assessments were performed in order to allow comparison of clinical features with other VPS13B mutations. Homozygosity mapping followed by whole exome sequencing and Sanger sequencing strategies were used to identify disease-related mutations. RESULTS: We identified two novel homozygous deletion mutations in VPS13B, firstly a 1 bp deletion, NM_017890.4:c.6879delT; p.Phe2293Leufs*24, and secondly a deletion of exons 37-40, which co-segregate with affected status. In addition to COH1-related traits, autistic features were reported in a number of family members, contrasting with the “friendly” demeanour often associated with COH1. The c.6879delT mutation is present in two families from different regions of the country, but both from the Baloch sub-ethnic group, and with a shared haplotype, indicating a founder effect among the Baloch population. CONCLUSION: We suspect that the c.6879delT mutation may be a common cause of COH1 and similar phenotypes among the Baloch population. Additionally, most of the individuals with the c.6879delT mutation in these two families also present with autistic like traits, and suggests that this variant may lead to a distinct autistic-like COH1 subgroup. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-015-0183-0) contains supplementary material, which is available to authorized users

    Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea

    No full text
    The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse
    corecore