4 research outputs found

    Epidemiology of antibiotic resistance in culture-positive hospitalized patients in selected hospitals in Khartoum, Sudan

    Get PDF
    Objective: To study the prevelence of antibiotic resistance and the prevalent bacterial isolates in hospitalized patients in Khartoum hospitals. Materials & Methods: A cross-sectional prevalence study was carried out during the period of Aprilā€“November 2015 in Khartoum; 226 bacterial cultures were included. Identification of isolates using standard biochemical tests and antibiotic susceptibilities were determined using disc diffusion method. Results were interpreted according to the standards of the British society of antimicrobial chemotherapy. Results: Eight bacterial species were isolated: Staphylococcus aureus, Enterococcus faecalis, Streptococcus spp., Klebsiella pneumoniae, Pseudomonas spp., Escherichia coli, Proteus spp., and Acinetobacter spp. S. aureus was the most prevalent, the majority of which were resistant to methicillin/oxacillin (MRSA). Cultures in our study were mainly from urine (36.7%), blood samples (37.2%), and wound cultures (19%). More than 90% of the tested isolates were resistant to cefuroxime; 54% and 73.8% of Gram-positive and Gram-negative isolates, respectively, were resistant to ceftazidime. Furthermore, there was a high meropenem resistance among Gram-negative isolates tested. Multi-resistant Acinetobacter spp. as well as vancomycin-resistant S. aureus was isolated. Gram-negative isolates showed good susceptibilities to aminoglycosides as well as ciprofloxacin. However, the high resistance rate to these antibiotics was observed in Gram-positive isolates in these hospitals. Conclusion: Methicillin-resistant S. aureus was the most prevalent organism. Gramnegative isolates showed good susceptibilities to aminoglycosides and ciprofloxacin. There were high resistance rates to cefuroxime, ceftazidime, and meropenem. Five vancomycin-resistant S. aureus were identified

    Prevalence of blaCTX-M, blaTEM, and blaSHV Genes among Extended-spectrum Ī²-lactamases-producing Clinical Isolates of Enterobacteriaceae in Different Regions of Sudan

    Get PDF
    Background: This study aimed to characterize blaCTX-M, blaTEM, and blaSHV genes among extended-spectrum beta-lactamases (ESBLs)-producing Enterobacteriaceae species in different regions of Sudan. Methods: In this cross-sectional study, different clinical samples (n = 985) were collected randomly from symptomatic patients from four geographical regions of Sudan and cultured on chromogenic media. Following bacterial identification, phenotypic screening of ESBLs was done according to CLSI guidelines using cefotaxime (30 Ī¼g), ceftazidime (30 Ī¼g), and cefepime (30 Ī¼g) discs with and without clavulanic acid. The DNA was extracted by guanidine hydrochloride protocol, and then conventional PCR was used to detect blaCTX-M, blaTEM, and blaSHV genes. The presence of genesā€™ subtypes was characterized by DNA Sanger sequencing for selected samples.  Results: Enterobacteriaceae represented 31% (305/985) of all isolates, 42 (128/305) of which were ESBLs producer, confirmed by phenotypic confirmatory test (75% [96/128] of them were positive for blaCTX-M genes, 61% [78/128] for blaTEM genes, and 38% [48/128] for blaSHV genes). Fourteen isolates (11%) were negative for all genes. Forty-eight percent (63/75) of Escherichia coli isolates were positive for blaCTX-M, while in Klebsiella pneumoniae, the dominant gene was blaTEM (82%) and had a low amount of blaSHV (59%). There was a significant association (P-value = 0.001 for all except for chloramphenicol, P = 0.014, and amikacin, P = 0.017) between resistance to third-generation cephalosporins and ciprofloxacin, nalidixic acid, meropenem, chloramphenicol, and amikacin.  Forty-two percent (40/96) of CTX-M-positive isolates were in Gizera State, 33% (32.96) in Sinnar, 24% (23/96) in Khartoum, and 1% (1/96) in White Nile.  Conclusion: We conclude that blaCTX-M genes are the most dominant genes in ESBLs-producing isolates and are more prevalent in big cities than in rural areas. Keywords: phenotypic, blaCTX-M, blaTEM, and blaSHV ESBLs genes, Enterobacteriaceae, Suda

    Prevalence of blaCTX-M, blaTEM, and blaSHV Genes among Extended-spectrum -lactamases-producing Clinical Isolates of Enterobacteriaceae in Different Regions of Sudan

    Get PDF
    Background: This study aimed to characterize blaCTX-M, blaTEM, and blaSHV genes among extended-spectrum beta-lactamases (ESBLs)-producing Enterobacteriaceae species in different regions of Sudan. Methods: In this cross-sectional study, different clinical samples (n = 985) were collected randomly from symptomatic patients from four geographical regions of Sudan and cultured on chromogenic media. Following bacterial identification, phenotypic screening of ESBLs was done according to CLSI guidelines using cefotaxime (30 Ī¼g), ceftazidime (30 Ī¼g), and cefepime (30 Ī¼g) discs with and without clavulanic acid. The DNA was extracted by guanidine hydrochloride protocol, and then conventional PCR was used to detect blaCTX-M, blaTEM, and blaSHV genes. The presence of genesā€™ subtypes was characterized by DNA Sanger sequencing for selected samples. Results: Enterobacteriaceae represented 31% (305/985) of all isolates, 42 (128/305) of which were ESBLs producer, confirmed by  phenotypic confirmatory test (75% [96/128] of them were positive for blaCTX-M genes, 61% [78/128] for blaTEM genes, and 38% [48/128] for blaSHV genes). Fourteen isolates (11%) were negative for all genes. Forty-eight percent (63/75) of Escherichia coli isolates were positive for blaCTX-M, while in Klebsiella pneumoniae, the dominant gene was blaTEM (82%) and had a low amount of blaSHV (59%). There was a significant association (P-value = 0.001 for all except for chloramphenicol, P = 0.014, and amikacin, P = 0.017) between resistance to third-generation cephalosporins and ciprofloxacin, nalidixic acid, meropenem, chloramphenicol, and amikacin. Forty-two percent (40/96) of CTX-M-positive isolates were in Gizera State, 33% (32.96) in Sinnar, 24% (23/96) in Khartoum, and 1% (1/96) in White Nile. Conclusion: We conclude that blaCTX-M genes are the most dominant genes in ESBLsproducing isolates and are more prevalent in big cities than in rural areas. Keywords: phenotypic, blaCTX-M, blaTEM, and blaSHV ESBLs genes, Enterobacteriaceae, Suda

    Epidemiology of Antibiotic Resistance in Culture-positive Hospitalized Patients in Selected Hospitals in Khartoum, Sudan

    Full text link
    Objective: To study the prevelence of antibiotic resistance and the prevalent bacterial isolates in hospitalized patients in Khartoum hospitals. Materials & Methods: A cross-sectional prevalence study was carried out during the period of Aprilā€“November 2015 in Khartoum; 226 bacterial cultures were included. Identification of isolates using standard biochemical tests and antibiotic susceptibilities were determined using disc diffusion method. Results were interpreted according to the standards of the British society of antimicrobial chemotherapy. Results: Eight bacterial species were isolated: Staphylococcus aureus, Enterococcusfaecalis, Streptococcus spp., Klebsiella pneumoniae, Pseudomonas spp., Escherichia coli, Proteus spp., and Acinetobacter spp. S. aureus was the most prevalent, the majority of which were resistant to methicillin/oxacillin (MRSA). Cultures in our study were mainly from urine (36.7%), blood samples (37.2%), and wound cultures (19%). More than 90% of the tested isolates were resistant to cefuroxime; 54% and 73.8% ofGram-positive and Gram-negative isolates, respectively, were resistant to ceftazidime. Furthermore, there was a high meropenem resistance among Gram-negative isolates tested. Multi-resistant Acinetobacter spp. as well as vancomycin-resistant S. aureus was isolated. Gram-negative isolates showed good susceptibilities to aminoglycosides as well as ciprofloxacin. However, the high resistance rate to these antibiotics was observed in Gram-positive isolates in these hospitals. Conclusion: Methicillin-resistant S. aureus was the most prevalent organism. Gramnegative isolates showed good susceptibilities to aminoglycosides and ciprofloxacin. There were high resistance rates to cefuroxime, ceftazidime, and meropenem. Five vancomycin-resistant S. aureus were identified
    corecore