1,793 research outputs found
Massive star evolution in close binaries:conditions for homogeneous chemical evolution
We investigate the impact of tidal interactions, before any mass transfer, on
various properties of the stellar models. We study the conditions for obtaining
homogeneous evolution triggered by tidal interactions, and for avoiding any
Roche lobe overflow during the Main-Sequence phase. We consider the case of
rotating stars computed with a strong coupling mediated by an interior magnetic
field. In models without any tidal interaction (single stars and wide
binaries), homogeneous evolution in solid body rotating models is obtained when
two conditions are realized: the initial rotation must be high enough, the loss
of angular momentum by stellar winds should be modest. This last point favors
metal-poor fast rotating stars. In models with tidal interactions, homogeneous
evolution is obtained when rotation imposed by synchronization is high enough
(typically a time-averaged surface velocities during the Main-Sequence phase
above 250 km s), whatever the mass losses. In close binaries, mixing is
stronger at higher than at lower metallicities. Homogeneous evolution is thus
favored at higher metallicities. Roche lobe overflow avoidance is favored at
lower metallicities due to the fact that stars with less metals remain more
compact. We study also the impact of different processes for the angular
momentum transport on the surface abundances and velocities in single and close
binaries. In models where strong internal coupling is assumed, strong surface
enrichments are always associated to high surface velocities in binary or
single star models. In contrast, models computed with mild coupling may produce
strong surface enrichments associated to low surface velocities. Close binary
models may be of interest for explaining homogeneous massive stars, fast
rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even
at high metallicities.Comment: 21 pages, 13 figures, 3 tables, accepted for publication in Astronomy
and Astrophysic
The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities
We investigate the effect of new stellar models, which take rotation into
account, computed for very low metallicities on the chemical evolution of the
earliest phases of the Milky Way. We check the impact of these new stellar
yields on a model for the halo of the Milky Way that can reproduce the observed
halo metallicity distribution. In this way we try to better constrain the ISM
enrichment timescale, which was not done in our previous work. The stellar
models adopted in this work were computed under the assumption that the ratio
of the initial rotation velocity to the critical velocity of stars is roughly
constant with metallicity. This naturally leads to faster rotation at lower
metallicity, as metal poor stars are more compact than metal rich ones. We find
that the new Z = 10-8 stellar yields computed for large rotational velocities
have a tremendous impact on the interstellar medium nitrogen enrichment for
log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new
stellar calculations in a chemical evolution model for the galactic halo with
infall and outflow, both high N/O and C/O ratios are obtained in the very-metal
poor metallicity range in agreement with observations. Our results give further
support to the idea that stars at very low metallicities could have initial
rotational velocities of the order of 600-800kms-1. An important contribution
to N from AGB stars is still needed in order to explain the observations at
intermediate metallicities. One possibility is that AGB stars at very low
metallicities also rotate fast. This could be tested in the future, once
stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9
pages, 4 figs., accepted) - Version 2: one reference added in the caption of
Fig.
SPINSTARS at low metallicities
The main effect of axial rotation on the evolution of massive PopIII stars is
to trigger internal mixing processes which allow stars to produce significant
amounts of primary nitrogen 14 and carbon 13. Very metal poor massive stars
produce much more primary nitrogen than PopIII stars for a given initial mass
and rotation velocity. The very metal poor stars undergo strong mass loss
induced by rotation. One can distinguish two types of rotationnaly enhanced
stellar winds: 1) Rotationally mechanical winds occurs when the surface
velocity reaches the critical velocity at the equator, {\it i.e.} the velocity
at which the centrifugal acceleration is equal to the gravity; 2) Rotationally
radiatively line driven winds are a consequence of strong internal mixing which
brings large amounts of CNO elements at the surface. This enhances the opacity
and may trigger strong line driven winds. These effects are important for an
initial value of of 0.54 for a 60 M at
, {\it i.e.} for initial values of
higher than the one (0.4) corresponding to observations at solar .
These two effects, strong internal mixing leading to the synthesis of large
amounts of primary nitrogen and important mass losses induced by rotation,
occur for between about 10 and 0.001. For metallicities above 0.001
and for reasonable choice of the rotation velocities, internal mixing is no
longer efficient enough to trigger these effects.Comment: 5 pages, 4 figures, to be published in the conference proceedings of
First Stars III, Santa Fe, 200
Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.
The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories
A note on the spectral analysis of matrix sequences via GLT momentary symbols: from all-at-once solution of parabolic problems to distributed fractional order matrices
The first focus of this paper is the characterization of the spectrum and the singular values of the coefficient matrix stemming from the discretization of a parabolic diffusion problem using a space-time grid and secondly from the approximation of distributed-order fractional equations. For this purpose we use the classical GLT theory and the new concept of GLT momentary symbols. The first permits us to describe the singular value or eigenvalue asymptotic distribution of the sequence of the coefficient matrices. The latter permits us to derive a function that describes the singular value or eigenvalue distribution of the matrix of the sequence, even for small matrix sizes, but under given assumptions. The paper is concluded with a list of open problems, including the use of our machinery in the study of iteration matrices, especially those concerning multigrid-type techniques
Can variability in the effect of opioids on refractory breathlessness be explained by genetic factors?
© 2015, BMJ Publishing Group. All rights reserved. Objectives: Opioids modulate the perception of breathlessness with a considerable variation in response, with poor correlation between the required opioid dose and symptom severity. The objective of this hypothesis-generating, secondary analysis was to identify candidate single nucleotide polymorphisms (SNP) from those associated with opioid receptors, signalling or pain modulation to identify any related to intensity of breathlessness while on opioids. This can help to inform prospective studies and potentially lead to better tailoring of opioid therapy for refractory breathlessness. Setting: 17 hospice/palliative care services (tertiary services) in 11 European countries. Participants: 2294 people over 18 years of age on regular opioids for pain related to cancer or its treatment. Primary outcome measures: The relationship between morphine dose, breathlessness intensity (European Organisation for Research and Treatment of Cancer Core Quality of Life Questionnaire; EORTCQLQC30 question 8) and 112 candidate SNPs from 25 genes (n=588). Secondary outcome measures: The same measures for people on oxycodone (n=402) or fentanyl (n=429). Results: SNPs not in Hardy-Weinberg equilibrium or with allele frequencies ( < 5%) were removed. Univariate associations between each SNP and breathlessness intensity were determined with Benjamini-Hochberg false discovery rate set at 20%. Multivariable ordinal logistic regression, clustering over country and adjusting for available confounders, was conducted with remaining SNPs. For univariate morphine associations, 1 variant on the 5-hydroxytryptamine type 3B (HTR3B) gene, and 4 on the ÎČ-2-arrestin gene (ARRB2) were associated with more intense breathlessness. 1 SNP remained significant in the multivariable model: people with rs7103572 SNP (HTR3B gene; present in 8.4% of the population) were three times more likely to have more intense breathlessness (OR 2.86; 95% CIs 1.46 to 5.62; p=0.002). No associations were seen with fentanyl nor with oxycodone. Conclusions: This large, exploratory study identified 1 biologically plausible SNP that warrants further study in the response of breathlessness to morphine therapy
âNot a Boy, Not a Childâ: A qualitative study on young peopleâs views on childbearing in Uganda
To understand reasons for persistent high fertility rate, we explored perceptions and influences of fertility motivation among young people from Uganda. Qualitative inquiry was used, data were organised using NVivo 2 package and latent content analysis performed. Major themes that emerged on factors that entrench high fertility included âSustenance of âmenâs bloodâ through the male childâ; âpoverty, joblessness and child bearingâ, and âother socio-cultural issues: religion, kin, elders and child bearingâ. Factors that reduce fertility included âperception on women emancipation, job security and couple fertility communicationâ. Young peoplesâ views on motivation for childbearing in Uganda are embedded in cultural norms and linked strongly to patriarchy, social respectability and womenâs sustenance. Innovative cultural practices and programs that increase womenâs social respectability such as emphasis that a girl can be heir and inherit her fatherâs property are needed to reduce sonpreference and fertility rates in the younger generation.(Afr J Reprod Health 2010; 14[1]:71-81)
- âŠ