576 research outputs found

    Lazy AC-Pattern Matching for Rewriting

    Full text link
    We define a lazy pattern-matching mechanism modulo associativity and commutativity. The solutions of a pattern-matching problem are stored in a lazy list composed of a first substitution at the head and a non-evaluated object that encodes the remaining computations. We integrate the lazy AC-matching in a strategy language: rewriting rule and strategy application produce a lazy list of terms.Comment: In Proceedings WRS 2011, arXiv:1204.531

    Maude: specification and programming in rewriting logic

    Get PDF
    Maude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    Maude: specification and programming in rewriting logic

    Get PDF
    AbstractMaude is a high-level language and a high-performance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both user-definable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and object-oriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Dwarf Nova V1040 Centauri and Variable Stars in its Vicinity

    Full text link
    We present the results of a photometric campaign of the dwarf nova V1040 Cen. The light curve shows two normal outbursts with recurrence time ~ 40 days and amplitude ~ 2.5 mag. Quiescence data show oscillations with periods in the range ~ 0.1 days (2.4 h) to ~ 0.5 days (12 h) of unknown origin. We measured the orbital period of V1040 Cen to be P_orb=0.060458(80) days (1.451+-0.002 h). Based on the M_v-P_orb relation we found the distance of V1040 Cen to be 137+-31 pc. In this paper we also report the detection of eleven new variable stars in the field of the monitored dwarf nova.Comment: 7 figures and 2 tables, accepted for publication in Acta Astronomic

    Automated Certification of Authorisation Policy Resistance

    Full text link
    Attribute-based Access Control (ABAC) extends traditional Access Control by considering an access request as a set of pairs attribute name-value, making it particularly useful in the context of open and distributed systems, where security relevant information can be collected from different sources. However, ABAC enables attribute hiding attacks, allowing an attacker to gain some access by withholding information. In this paper, we first introduce the notion of policy resistance to attribute hiding attacks. We then propose the tool ATRAP (Automatic Term Rewriting for Authorisation Policies), based on the recent formal ABAC language PTaCL, which first automatically searches for resistance counter-examples using Maude, and then automatically searches for an Isabelle proof of resistance. We illustrate our approach with two simple examples of policies and propose an evaluation of ATRAP performances.Comment: 20 pages, 4 figures, version including proofs of the paper that will be presented at ESORICS 201

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
    corecore