28 research outputs found

    Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: addressing the knowledge gaps before establishing causation.

    Get PDF
    In July 2018, the Food and Drug Administration warned about a possible relationship between dilated cardiomyopathy (DCM) in dogs and the consumption of dog food formulated with potatoes and pulse ingredients. This issue may impede utilization of pulse ingredients in dog food or consideration of alternative proteins. Pulse ingredients have been used in the pet food industry for over 2 decades and represent a valuable source of protein to compliment animal-based ingredients. Moreover, individual ingredients used in commercial foods do not represent the final nutrient concentration of the complete diet. Thus, nutritionists formulating dog food must balance complementary ingredients to fulfill the animal's nutrient needs in the final diet. There are multiple factors that should be considered, including differences in nutrient digestibility and overall bioavailability, the fermentability and quantity of fiber, and interactions among food constituents that can increase the risk of DCM development. Taurine is a dispensable amino acid that has been linked to DCM in dogs. As such, adequate supply of taurine and/or precursors for taurine synthesis plays an important role in preventing DCM. However, requirements of amino acids in dogs are not well investigated and are presented in total dietary content basis which does not account for bioavailability or digestibility. Similarly, any nutrient (e.g., soluble and fermentable fiber) or physiological condition (e.g., size of the dog, sex, and age) that increases the requirement for taurine will also augment the possibility for DCM development. Dog food formulators should have a deep knowledge of processing methodologies and nutrient interactions beyond meeting the Association of American Feed Control Officials nutrient profiles and should not carelessly follow unsubstantiated market trends. Vegetable ingredients, including pulses, are nutritious and can be used in combination with complementary ingredients to meet the nutritional needs of the dog

    Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011–2012)

    No full text
    <div><p>Background</p><p>A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs. Further, veterinarians and dog owners typically dismiss inherited/genetic diseases as possibilities for health problems in mixed-breed dogs, assuming hybrid vigor will guarantee that single-gene disease mutations are not a cause for concern. Therefore, the objective of this study was to screen a large mixed-breed canine population for the presence of mutant alleles associated with five autosomal recessive disorders: hyperuricosuria and hyperuricemia (HUU), cystinuria (CYST), factor VII deficiency (FVIID), myotonia congenita (MYC) and phosphofructokinase deficiency (PKFD). Genetic testing was performed in conjunction with breed determination via the commercially-available Wisdom Panel<sup>TM</sup> test.</p><p>Results</p><p>From a population of nearly 35,000 dogs, homozygous mutant dogs were identified for HUU (n = 57) and FVIID (n = 65). Homozygotes for HUU and FVIID were identified even among dogs with highly mixed breed ancestry. Carriers were identified for all disorders except MYC. HUU and FVIID were of high enough frequency to merit consideration in any mixed-breed dog, while CYST, MYC, and PKFD are vanishingly rare.</p><p>Conclusions</p><p>The assumption that mixed-breed dogs do not suffer from single-gene genetic disorders is shown here to be false. Within the diseases examined, HUU and FVIID should remain on any practitioner’s rule-out list, when clinically appropriate, for all mixed-breed dogs, and judicious genetic testing should be performed for diagnosis or screening. Future testing of large mixed-breed dog populations that include additional known canine genetic mutations will refine our knowledge of which genetic diseases can strike mixed-breed dogs.</p></div

    ABCG2 Polymorphisms and Predictive Fluoroquinolone Phototoxicity in Nondomestic Felids

    No full text
    Fluoroquinolones are a widely used class of chemotherapeutics within veterinary medicine, prized for their broad-spectrum bactericidal activity. These drugs present a known risk of retinal phototoxicity in domestic cats (Felis catus); therefore, using lower doses and alternative antibiotic classes is encouraged in this species. This adverse drug effect of fluoroquinolones, and enrofloxacin specifically, has been determined to be species-specific in domestic felids. Four feline-specific missense variants in ABCG2 result in four amino acid changes (E159M, S279L, H283Q, and T644I) that are unique to the domestic cat compared with multiple other nonfeline mammalian species. These changes alter the ABCG2 protein involved with the cellular transmembrane transport of drugs, including fluoroquinolones, making the protein functionally defective in domestic cats. The predisposition to fluoroquinolone-mediated phototoxicity in nondomestic felids was explored in this study. At least eight nondomestic felids share the four ABCG2 missense variants with domestic cats, and eleven other felids shared at least three of the four domestic cat variants. Taken together, these results suggest the genetic potential for nondomestic felids to also experience fluoroquinolone-induced retinal phototoxicity; therefore, cautions similar to those for domestic cats should be followed for these drugs in the entire feline taxon

    Observed frequencies of alternate/mutated alleles by disorder in a large, mixed-breed canine population.

    No full text
    <p>Observed frequencies of alternate/mutated alleles by disorder in a large, mixed-breed canine population.</p

    A GJA9 frameshift variant is associated with polyneuropathy in Leonberger dogs.

    Get PDF
    BACKGROUND Many inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans. The canine disorders collectively show a variable expression of progressive clinical signs and ages of onset, and different breed prevalences. Previously in the Leonberger breed, a variant highly associated with a juvenile-onset PN was identified in the canine orthologue of a CMT-associated gene. As this deletion in ARHGEF10 (termed LPN1) does not explain all cases, PN in this breed may encompass variants in several genes with similar clinical and histopathological features. RESULTS A genome-wide comparison of 173 k SNP genotypes of 176 cases, excluding dogs homozygous for the ARHGEF10 variant, and 138 controls, was carried out to detect further PN-associated variants. A single suggestive significant association signal on CFA15 was found. The genome of a PN-affected Leonberger homozygous for the associated haplotype was sequenced and variants in the 7.7 Mb sized critical interval were identified. These variants were filtered against a database of variants observed in 202 genomes of various dog breeds and 3 wolves, and 6 private variants in protein-coding genes, all in complete linkage disequilibrium, plus 92 non-coding variants were revealed. Five of the coding variants were predicted to have low or moderate effect on the encoded protein, whereas a 2 bp deletion in GJA9 results in a frameshift of high impact. GJA9 encodes connexin 59, a connexin gap junction family protein, and belongs to a group of CMT-associated genes that have emerged as important components of peripheral myelinated nerve fibers. The association between the GJA9 variant and PN was confirmed in an independent cohort of 296 cases and 312 controls. Population studies showed a dominant mode of inheritance, an average age of onset of approximately 6 years, and incomplete penetrance. CONCLUSIONS This GJA9 variant represents a highly probable candidate variant for another form of PN in Leonberger dogs, which we have designated LPN2, and a new candidate gene for CMT disease. To date, approximately every third PN-diagnosed Leonberger dog can be explained by the ARHGEF10 or GJA9 variants, and we assume that additional genetic heterogeneity in this condition exists in the breed

    A CNTNAP1 Missense Variant Is Associated with Canine Laryngeal Paralysis and Polyneuropathy.

    Get PDF
    Laryngeal paralysis associated with a generalized polyneuropathy (LPPN) most commonly exists in geriatric dogs from a variety of large and giant breeds. The purpose of this study was to discover the underlying genetic and molecular mechanisms in a younger-onset form of this neurodegenerative disease seen in two closely related giant dog breeds, the Leonberger and Saint Bernard. Neuropathology of an affected dog from each breed showed variable nerve fiber loss and scattered inappropriately thin myelinated fibers. Using across-breed genome-wide association, haplotype analysis, and whole-genome sequencing, we identified a missense variant in the CNTNAP1 gene (c.2810G>A; p.Gly937Glu) in which homozygotes in both studied breeds are affected. CNTNAP1 encodes a contactin-associated protein important for organization of myelinated axons. The herein described likely pathogenic CNTNAP1 variant occurs in unrelated breeds at variable frequencies. Individual homozygous mutant LPPN-affected Labrador retrievers that were on average four years younger than dogs affected by geriatric onset laryngeal paralysis polyneuropathy could be explained by this variant. Pathologic changes in a Labrador retriever nerve biopsy from a homozygous mutant dog were similar to those of the Leonberger and Saint Bernard. The impact of this variant on health in English bulldogs and Irish terriers, two breeds with higher CNTNAP1 variant allele frequencies, remains unclear. Pathogenic variants in CNTNAP1 have previously been reported in human patients with lethal congenital contracture syndrome and hypomyelinating neuropathy, including vocal cord palsy and severe respiratory distress. This is the first report of contactin-associated LPPN in dogs characterized by a deleterious variant that most likely predates modern breed establishment

    A Large Animal Model for <i>CNGB1</i> Autosomal Recessive Retinitis Pigmentosa

    Get PDF
    <div><p>Retinal dystrophies in dogs are invaluable models of human disease. Progressive retinal atrophy (PRA) is the canine equivalent of retinitis pigmentosa (RP). Similar to RP, PRA is a genetically heterogenous condition. We investigated PRA in the Papillon breed of dog using homozygosity mapping and haplotype construction of single nucleotide polymorphisms within a small family group to identify potential positional candidate genes. Based on the phenotypic similarities between the PRA-affected Papillons, mouse models and human patients, <i>CNGB1</i> was selected as the most promising positional candidate gene. <i>CNGB1</i> was sequenced and a complex mutation consisting of the combination of a one basepair deletion and a 6 basepair insertion was identified in exon 26 (c.2387delA;2389_2390insAGCTAC) leading to a frameshift and premature stop codon. Immunohistochemistry (IHC) of pre-degenerate retinal sections from a young affected dog showed absence of labeling using a C-terminal CNGB1 antibody. Whereas an antibody directed against the N-terminus of the protein, which also recognizes the glutamic acid rich proteins arising from alternative splicing of the CNGB1 transcript (upstream of the premature stop codon), labeled rod outer segments. CNGB1 combines with CNGA1 to form the rod cyclic nucleotide gated channel and previous studies have shown the requirement of CNGB1 for normal targeting of CNGA1 to the rod outer segment. In keeping with these previous observations, IHC showed a lack of detectable CNGA1 protein in the rod outer segments of the affected dog. A population study did not identify the <i>CNGB1</i> mutation in PRA-affected dogs in other breeds and documented that the <i>CNGB1</i> mutation accounts for ∼70% of cases of Papillon PRA in our PRA-affected canine DNA bank. <i>CNGB1</i> mutations are one cause of autosomal recessive RP making the <i>CNGB1</i> mutant dog a valuable large animal model of the condition.</p></div

    Representative ERG tracings from a normal control Papillon and a PRA-affected Papillon, both 10 weeks of age.

    No full text
    <p>A. Dark-adapted ERG recordings at −2.4, −1.2 and 0.4 log cdS/m<sup>2</sup>. B. Light-adapted flash and flicker (33 Hz) ERG tracings. Background white light of 30 cd/m<sup>2</sup> and flash intensity of 0.4 log cdS/m<sup>2</sup>. The vertical bars on the flicker ERG indicates the flash timing.</p

    Intron and exon boundries for canine CNGB1 gene.

    No full text
    <p>1. Locations are all in respect to UCSC Genome Browser CanFam2.0 (<a href="http://genome.ucsc.edu" target="_blank">http://genome.ucsc.edu</a>).</p><p>2. Capital letters are exonic DNA sequences and lower case bases are intronic regions.</p><p>End of coding region marked in Exon 33 row by underlined TGA.</p
    corecore