10 research outputs found

    Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin\u27s Chemical Structure and Paramagnetism

    Full text link
    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of Îł-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after Îł-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after Îł-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after Îł-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown

    Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism

    Get PDF
    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of Îł-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after Îł-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after Îł-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after Îł-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown

    Polypyrrole-palladium nanoparticles composite as efficient catalyst for Suzuki-Miyaura coupling

    No full text
    International audienceSynthesis of a new hybrid material (Pd/PPy) composed of polypyrrole globules with uniformly incorporated Pd nanoparticles via direct redox reaction between pyrrole and Pd(NH3)(4)Cl-2 in water has been recently reported (V.A. Zinovyeva, M.A.Vorotyntsev, I. Bezverkhyy, D. Chaumont, J.-C. Hierso, Adv. Funct. Mater. 21 (2011) 1064-1075). In the actual study, this procedure has been extended to synthesize a series of Pd/PPy powders with variable palladium content and morphological parameters. Depending on the monomer-to-oxidant ratio in reaction mixture, average diameters of Pd and PPy particles may change in the ranges of 1.25-1.45 and 27-62 nm, respectively, the Pd concentration being within 33.5-42.0 wt.%. In general terms, decrease of the monomer-to-oxidant ratio led to formation of the Pd/PPy hybrid material with smaller diameters of both components and a higher Pd loading. The Pd/PPy composites have been studied in Suzuki-Miyaura coupling and showed high catalytic efficiency. Aryl iodides, bromides and chlorides are active. The reaction can be performed using arylboronic acids or tetraarylborates, both in organic solvents and in water, thus making the process ecologically friendly. The recycling of the catalyst is possible if its particles are immobilized on the graphite support. The comparison of two samples revealed that Pd/PPy nanocomposite with the diameter of PPy spheres of about 30 nm is more efficient in catalysis, as compared to the sample with bigger PPy spheres (about 60 nm), due to transport limitations for reagents inside the polypyrrole sphere in the latter case. For palladium/polypyrrole nanocomposites with the small diameter of PPy sphere, which are easily penetrable for the reagents and in which all Pd nanoparticles are active. Pd content in polypyrrole spheres does not influence the yield of biaryls: the more is the Pd content in polypyrrole spheres, the less amount of catalyst is necessary to obtain the same yield of biaryl

    Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing

    No full text
    Studies on hereditary fixation of the tame-behavior phenotype during animal domestication remain relevant and important because they are of both basic research and applied significance. In model animals, gray rats Rattus norvegicus bred for either an enhancement or reduction in defensive response to humans, for the first time, we used high-throughput RNA sequencing to investigate differential expression of genes in tissue samples from the tegmental region of the midbrain in 2-month-old rats showing either tame or aggressive behavior. A total of 42 differentially expressed genes (DEGs; adjusted p-value   2) were identified, with 20 upregulated and 22 downregulated genes in the tissue samples from tame rats compared with aggressive rats. Among them, three genes encoding transcription factors (TFs) were detected: Ascl3 was upregulated, whereas Fos and Fosb were downregulated in tissue samples from the brains of tame rats brain. Other DEGs were annotated as associated with extracellular matrix components, transporter proteins, the neurotransmitter system, signaling molecules, and immune system proteins. We believe that these DEGs encode proteins that constitute a multifactorial system determining the behavior for which the rats have been artificially selected. We demonstrated that several structural subtypes of E-box motifs—known as binding sites for many developmental TFs of the bHLH class, including the ASCL subfamily of TFs—are enriched in the set of promoters of the DEGs downregulated in the tissue samples of tame rats’. Because ASCL3 may act as a repressor on target genes of other developmental TFs of the bHLH class, we hypothesize that the expression of TF gene Ascl3 in tame rats indicates longer neurogenesis (as compared to aggressive rats), which is a sign of neoteny and domestication. Thus, our domestication model shows a new function of TF ASCL3: it may play the most important role in behavioral changes in animals

    New Luminescent Tetranuclear Lanthanide‐based Silsesquioxane Cage‐like Architectures

    No full text
    International audienceWe report on the synthesis, structure, magnetic and luminescence properties investigations of four new cagelike lanthanide-based silsesquioxanes (Cat)2[(PhSiO1.5)8(LnO1.5)4(O)(NO2.5)6(EtOH)2(MeCN)2] (where Cat + = Et4N + , PPh4P + and Ln 3+ = Eu 3+ Tb 3+ and (Ph4P)4[(PhSiO1.5)8(TbO1.5)4(O)2(NO2.5)8]‱10MeCN. They present an unusual prism-like topology of cage architectures and lanthanide-characteristic emission, which makes them the first luminescent cage-like lanthanide silsesquioxanes. One of the Tb 3+-based cages presents a magnetic spin-flip transition

    Cardiologic Manifestations in Omicron‐Type Versus Wild‐Type COVID‐19: A Systematic Echocardiographic Study

    No full text
    Background Information about the cardiac manifestations of the Omicron variant of COVID‐19 is limited. We performed a systematic prospective echocardiographic evaluation of consecutive patients hospitalized with the Omicron variant of COVID‐19 infection and compared them with similarly recruited patients were propensity matched with the wild‐type variant. Methods and Results A total of 162 consecutive patients hospitalized with Omicron COVID‐19 underwent complete echocardiographic evaluation within 24 hours of admission and were compared with propensity‐matched patients with the wild‐type variant (148 pairs). Echocardiography included left ventricular (LV) systolic and diastolic, right ventricular (RV), strain, and hemodynamic assessment. Echocardiographic parameters during acute infection were compared with historic exams in 62 patients with the Omicron variant and 19 patients with the wild‐type variant who had a previous exam within 1 year. Of the patients, 85 (53%) had a normal echocardiogram. The most common cardiac pathology was RV dilatation and dysfunction (33%), followed by elevated LV filling pressure (E/eâ€Č ≄14, 29%) and LV systolic dysfunction (ejection fraction <50%, 10%). Compared with the matched wild‐type cohort, patients with Omicron had smaller RV end‐systolic areas (9.3±4 versus 12.3±4 cm2; P=0.0003), improved RV function (RV fractional‐area change, 53.2%±10% versus 39.7%±13% [P<0.0001]; RV Sâ€Č, 12.0±3 versus 10.7±3 cm/s [P=0.001]), and higher stroke volume index (35.6 versus 32.5 mL/m2; P=0.004), all possibly related to lower mean pulmonary pressure (34.6±12 versus 41.1±14 mm Hg; P=0.0001) and the pulmonary vascular resistance index (P=0.0003). LV systolic or diastolic parameters were mostly similar to the wild‐type variant‐matched cohort apart from larger LV size. However, in patients who had a previous echocardiographic exam, these LV abnormalities were recorded before acute Omicron infection, but not in the wild‐type cohort. Numerous echocardiographic parameters were associated with higher in‐hospital mortality (LV ejection fraction, stroke volume index, E/eâ€Č, RV Sâ€Č). Conclusions In patients with Omicron, RV function is impaired to a lower extent compared with the wild‐type variant, possibly related to the attenuated pulmonary parenchymal and/or vascular disease. LV systolic and diastolic abnormalities are as common as in the wild‐type variant but were usually recorded before acute infection and probably reflect background cardiac morbidity. Numerous LV and RV abnormalities are associated with adverse outcome in patients with Omicron

    Unusual Tri‑, Hexa‑, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides

    No full text
    Three types of unusual cagelike copper­(II) methylsilsesquioxanes, namely, nona- [(MeSiO<sub>1.5</sub>)<sub>18</sub>(CuO)<sub>9</sub>] <b>1</b>, hexa- [(MeSiO<sub>1.5</sub>)<sub>10</sub>(HO<sub>0.5</sub>)<sub>2</sub>(CuO)<sub>6</sub>­​(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>­(MeSiO<sub>1.5</sub>)<sub>10</sub>(HO<sub>0.5</sub>)<sub>1.33</sub>­​(CH<sub>3</sub>COO<sub>0.5</sub>)<sub>0.67</sub>(CuO)<sub>6</sub>­(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>] <b>2</b>, [(MeSiO<sub>1.5</sub>)<sub>10</sub>(CuO)<sub>6</sub>­​(MeO<sub>0.5</sub>)<sub>2</sub>­(C<sub>10</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>] <b>3</b>, and trinuclear [(MeSiO<sub>1.5</sub>)<sub>8</sub>­​(CuO)<sub>3</sub>(C<sub>10</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>] <b>4</b>, were obtained in 44%, 27%, 20%, and 16% yields, respectively. Nuclearity and structural fashion of products was controlled by the choice of solvent system and ligand, specifically assisting the assembling of cage. Structures of <b>1</b>–<b>4</b> were determined by single-crystal X-ray diffraction analysis. Compounds <b>1</b> and <b>4</b> are the first cage metallasilsesquioxanes, containing nine and three Cu ions, respectively. Product <b>1</b> is the first observation of nonanuclear metallasilsesquioxane ever. Unique architecture of <b>4</b> represents early unknown type of molecular geometry, based on two condensed pentamembered siloxane cycles. Topological analysis of metal clusters in products <b>1</b>–<b>4</b> is provided. Complex <b>1</b> efficiently catalyzes oxidation of alcohols with <i>tert</i>-butylhydroperoxide TBHP to ketones or alkanes with H<sub>2</sub>O<sub>2</sub> to alkyl hydroperoxides in acetonitrile

    Explaining Political Regime Diversity in Post-Communist States: An Evaluation and Critique of Current Theories

    No full text

    The Political Economy of Populism

    No full text
    corecore