33 research outputs found

    Dynamics of a turbulent buoyant plume in a stratified fluid : an idealized model of subglacial discharge in Greenland fjords

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2611-2630, doi:10.1175/JPO-D-16-0259.1.This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.This work was supported by Linné FLOW Centre at KTH and the Academy of Finland Centre of Excellence program (Grant 307331) (E. E.) and VR Swedish Research Council, Outstanding Young Researcher Award, Grant VR 2014-5001 (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.2018-04-2

    Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018):1941-1950, doi:10.1175/JPO-D-17-0194.1.Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.This work was supported by the Linné FLOW Centre at KTH and the Academy of Finland Center of Excellence Programme Grant 307331 (author Ezhova) and by VR Swedish Research Council GrantVR2014-5001 (author Brandt). Support to author Cenedese was given by NSF Project OCE-1434041.2019-02-2

    Interaction between a vertical turbulent jet and a thermocline

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3415-3427, doi:10.1175/JPO-D-16-0035.1.The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.This work was supported by the Linné FLOW Centre at KTH (E. E.), the European Research Council Grant ERC-2013-CoG-616186, TRITOS (L. B.), and the Swedish Research Council (VR), Outstanding Young Researcher Award (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.2017-05-1

    A simple model for the time evolution of the condensation sink in the atmosphere for intermediate Knudsen numbers

    Get PDF
    Transformation of the mass flux towards the particle from the kinetic regime to the continuum regime is often described by the Fuchs-Sutugin coefficient. Kinetic regime can be obtained as a limiting case when only one term of the expansion of the Fuchs-Sutugin coefficient at small 1/Kn is considered. Here we take the two first terms into account, and get a mass flux which agrees well with the full mass flux down to Kn similar to 0.5. This procedure allows an analytical solution of the condensation equation valid for the range of intermediate Knudsen numbers to be obtained. The expansion is further applied to analytically calculate the condensation sink. The formula for the condensation sink is tested against field observations. The relative contribution of different aerosol modes to the condensation sink is discussed. Furthermore, we present a simple model describing the coupled dynamics of the condensing vapour and the condensation sink. The model gives reasonable predictions of condensation sink dynamics during the periods of the aerosol modes' growth by condensation in the atmosphere.Peer reviewe

    Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests

    Get PDF
    Boreal forests cover vast areas of land in the high latitudes of the Northern Hemisphere, which are under amplified climate warming. The interactions between the forests and the atmosphere are known to generate a complex set of feedback processes. One feedback process, potentially producing a cooling effect, is associated with an increased reflectance of clouds due to aerosol-cloud interactions. Here, we investigate the effect that the boreal forest environment can have on cloud-related properties during the growing season. The site investigated was the SMEAR II station in Hyytiala, Finland. Air mass back trajectories were the basis of the analysis and were used to estimate the time each air mass had spent over land prior to its arrival at the station. This enabled tracking the changes occurring in originally marine air masses as they travelled across the forested land. Only air masses arriving from the northwestern sector were investigated, as these areas have a relatively uniform forest cover and relatively little anthropogenic interference. We connected the air mass analysis with comprehensive in situ and remote-sensing data sets covering up to 11 growing seasons. We found that the properties of air masses with short land transport times, thereby less influenced by the forest, differed from those exposed to the forest environment for a longer period. The fraction of air masses with cloud condensation nuclei concentrations (at 0.2 % supersaturation) above the median value of 180 cm(-3) of the analysed air masses increased from approximately 10 % to 80 % after 55 h of exposure to boreal forest, while the fraction of air masses with specific humidity above the median value of 5 g kg(-1) increased from roughly 25 % to 65 %. Signs of possible resulting changes in the cloud layer were also observed from satellite measurements. Lastly, precipitation frequency increased from the average of approximately 7 % to about 12 % after a threshold of 50 h of land transport. Most of the variables showed an increase with an increasing land transport time until approximately 50-55 h, after which a balance with little further variation seemed to have been reached. This appears to be the approximate timescale in which the forest-cloud interactions take effect and the air masses adjust to the local forest environment.Peer reviewe

    CarbonSink+: Accounting for multiple climate feedbacks from forests

    Get PDF
    Forests cool the climate system by acting as a sink for carbon dioxide (CO2) and by enhancing the atmospheric aerosol load. whereas the simultaneous decrease of the surface albedo tends to have a warming effect. Here, we present the concept of CarbonSink+. which considers these combined effects. Using the boreal forest environment as an illustrative example, we estimated that accounting for the CarbonSink+ enhances the forest CO2 uptake by 10-50% due to the combined effects of CO2 fertilization and aerosol-induced diffuse radiation enhancement on photosynthesis. We further estimated that with afforestation or reforestation, i.e., replacing grasslands with forests in a boreal environment, the radiative cooling due to forest aerosols cancels most of the radiative warming due to decreased surface albedos. These two forcing components have. however, relatively large uncertainty ranges. resulting in large uncertainties in the overall effect of CarbonSink+. We discuss shortly the potential future changes in the strength of CarbonSink+ in the boreal region, resulting from changes in atmospheric composition and climate.Peer reviewe
    corecore