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ABSTRACT

Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tide-

water glaciers. These plumes have been traditionallymodeled using classical plume theory, and their characteristic

parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the

applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex

near-wall plumedynamics. In this study, corrections to the classical plume theory are introduced to account for the

presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional

turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of

magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result

suggests a significant increase in themelting estimates by the current parameterization. However, the volume flux

in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding

suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar

characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.

1. Introduction

Subglacial discharge is among the major factors con-

trolling submarine melting of Greenland’s tidewater gla-

ciers (Straneo and Cenedese 2015). Turbulent plumes

generated by freshwater at the freezing temperature

discharged at the glacier base enhance melting of the ice

face. In Greenland the ice tongue has broken off in most

tidewater glaciers and the ice face is quasi vertical; there-

fore, subglacial discharge plumes are usually modeled as

a turbulent buoyant plume propagating along a vertical ice

face (Straneo and Cenedese 2015).

Current ice–ocean models quantify melting employ-

ing the three-equation formulation by Holland and

Jenkins (1999), where the effect of plume turbulence is

parameterized through the friction velocity u*, which is a

fundamental parameter defining wall-bounded turbu-

lence, and the melting rate is assumed to be proportional

to u*. To estimate the friction velocity from the mean

velocity profile, a drag coefficient is typically used:
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, (1)

where t5 rhu0
iu

0
ji is the mean turbulent stress parallel to

the ice face, Uref is the reference velocity, and r is the

water density. The drag coefficient is usually taken to

be of order Cd ’ 0.001, a value close to that of a tur-

bulent boundary layer flow over a flat plate at high

Reynolds numbers (e.g., Monin et al. 1971). However, a
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three-dimensional wall plume can be expected to exhibit

strong lateral spreading similar to what was reported for

the more extensively investigated wall jets (Launder and

Rodi 1983). This effect is attributed by these authors to

the secondary flows in the jet as well as to the gradients of

turbulent stresses, the latter being more important (Craft

and Launder 2001). An assumption that the turbulent

stresses are similar to those in the two-dimensional bound-

ary layer flow over a flat plate is thus not justified. A recent

study (Slater et al. 2016) used a larger value of Cd 5 0.01

following Jenkins et al. (2010), who found that this larger

value of Cd was necessary to predict the observed melt

rates of an ice shelf in Antarctica. In addition, current

estimates of entrainment in wall plumes are based on

experimental data and theoretical models for conical free

plumes (Cowton et al. 2015; Slater et al. 2016; Mankoff

et al. 2016).

The main focus of this study is to compare the modifi-

cation of the classical plume theory for a three-dimensional

turbulent wall plume with direct numerical simulations

(DNS) and to quantify the drag and entrainment co-

efficients consistent with the theory using data fromDNS

and existing experiments.An appropriate drag coefficient

is obtained by applying the modified plume theory to our

simulations, and for this we use an analytical solution

that, to our knowledge, is novel for 3D flows [2D ana-

logs are reported by Gayen et al. (2016)]. As a first step,

we consider a turbulent plume along a vertical wall

without the meltwater feedback; that is, we assume that

the wall is neither a source of mass nor a source of

buoyancy.

2. Wall plume theory

Following Cowton et al. (2015), we consider the wall

plume as one-half of a conical plume and assume that it

can be described by the classical system of equations

suggested by Morton et al. (1956) (this approach will be

justified later by means of DNS). This theory is referred

hereinafter as a modified Morton–Taylor–Turner (MTT)

theory: the conservation equations for volume ~Q, mo-

mentum ~M, and buoyancy ~F fluxes are written, following

Cowton et al. (2015) and Slater et al. (2016), as

d ~Q

d~z
5

d

d~z
(p ~b2~u/2)5pa ~b~u , (2)

d ~M

d~z
5

d

d~z
(p ~b2~u2/2)5p ~b2g0/22 2C

d
~b~u2, and (3)

d ~F

d~z
5

d

d~z
(p ~b2~ug0/2)5 0 : (4)

In the above, ~b is the dimensional plume radius, ~u

is the dimensional plume velocity (assuming a top-hat

velocity profile), g0 5 gD~r/~r0 is the reduced gravity, Cd is

the drag coefficient, and a is the entrainment coefficient.

The latter is defined as ~ue 5a~u, where ~ue is the entrain-

ment velocity. Note that, because of the presence of a wall,

a is not necessarily equal to that for a conical plume.

Moreover, to account for a possible asymmetry in the

plume shape, we introduce an ‘‘equivalent’’ radius ~b (to be

defined in terms of momentum and volume fluxes).

The system comprising Eqs. (2)–(4) is non-

dimensionalized by introducing the following variables:

Q5 ~Q/( ~b2
0~u0), M5 ~M/( ~b2

0~u
2
0), F5 ~FFr20/(

~b0~u
3
0), and z5

~z/ ~b0, where Fr0 5 ~u0/
ffiffiffiffiffiffiffiffiffi
g00 ~b0

q
is the source Froude number

and the subscript 0 indicates values at the source.

Equations (2) and (3) can be rewritten as
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When neglecting the effect of a wall on the plume

dynamics (hereinafter called a ‘‘free’’ plume), the drag

term in Eq. (6) is assumed to be zero and
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F
0
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which has the following analytical solution:
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However, in the presence of a wall, the drag term in

Eq. (6) should be considered, which leads to
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The solution therefore becomes (see the online sup-

plementary material for the details of the derivation)
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(10)

where aw is the entrainment coefficient in the presence

of a wall.

The first term on the rhs of Eq. (10) grows with Q

whereas the second termdecreases; therefore, forQ�Q0,
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that is, sufficiently far from the source, the second term

on the rhs of Eq. (10) can be neglected. Therefore, in

the far field (i.e., for M � M0 and Q � Q0), the ratio

M5/2/Q2 is constant for both the free [Eq. (8)] and wall

[Eq. (10)] plume, and the drag and turbulent entrain-

ment coefficients define the difference between these

two cases. Since Cd is taken to be small in current

models (Cowton et al. 2015; Slater et al. 2016), the wall

plume is assumed to behave as a half-conical free

plume. This, however, should be treated with caution.

We show in what follows that the drag coefficient is

an order of magnitude larger than can be expected

when compared with the boundary layer flow over a

flat plate.

The entrainment coefficient for a free plume can be

obtained from the MTT theory [b 5 (6/5)az] if one

knows the evolution of the plume radius with the dis-

tance from the source. The far-field asymptotic solutions

for the wall plume radius and velocity can be obtained

substituting the first term on the rhs of Eq. (10) in Eq. (5)

and combining the solution with the definitions of the

volume and momentum fluxes:

b
w
5 (6/5)a

w
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is the classical MTT self-similar solution for a conical

plume in a homogeneous fluid and the subscript w in-

dicates wall plume properties.

In what follows, we quantify the entrainment and

drag coefficients using data from DNS. In particular,

we use the radius dependence on the distance from

the source to define the entrainment coefficients for

free and wall plumes and then quantify the drag co-

efficient based on the far-field solutions of Eqs. (8)

and (10).

3. Results

Two simulations of a turbulent vertical lazy plume in a

homogeneous fluid were performed: one conical plume

and one wall plume. The conical plume is generated

by a source volume flux 2 ~Q0 exiting from a round source

of radius ~b0. The source Froude number of the plume

is Fr0 5 ~u0/(g
0
0
~b0)

1/2
5 0:66 and the Reynolds number

Re0 5 ~u0
~b0/n5 1000, where n is the kinematic viscosity.

The Froude number chosen here corresponds to that

of a lazy plume, typical of those generated by a sub-

glacial discharge. Note that a lazy plume gains velocity

near the source because of its buoyancy (e.g., Fischer

et al. 1979); for the Froude number used here the

equivalent top-hat velocity near the source becomes

approximately 2 times the source velocity, and, con-

sequently, the effective Reynolds number near the

source also increases by nearly a factor of 2. The wall

plume is generated from a half-round source of radius
~b0 attached to a wall with a total discharge ~Q0 (see

visualization in Fig. 1, left panel).

The DNS has been performed using the Nek5000

spectral-element code (Argonne National Laboratory;

https://nek5000.mcs.anl.gov/). We consider an incompressible

fluid with buoyancy modeled by the Boussinesq approx-

imation. A cylindrical domain is used to simulate the

conical plume, whereas a half cylinder is used for the wall

plume, with an increased resolution close to the wall. The

domain radius is 10~b0, and the vertical length is 29~b0. The

resolution is less than 0:01~b0 near the wall [or, in terms of

inner scaling, Dx # 0.8xy, where xy 5 (Re0u*)
21 is the

viscous length scale, except in a small domain in the vicinity

of the symmetry axis where the resolution isDx’ xy] and is

close to 0:01 ~b0 in the plume; therefore, we resolve the vis-

cous sublayer as well as the plume up to the Kolmogorov

scale of this flow, estimated as ~b0/Re
3/4 ’ 0:01 ~b0. The total

number of nodes is about 29 million for the wall plume

and 46 million for the conical plume. We use the open

(zero gradient) boundary conditions for the vertical

velocity and density, combined with a sponge layer for

the density fluctuations and horizontal velocity at the

top outflow boundary, open boundary conditions for

all variables, and a sponge layer for the density fluc-

tuations on the open domain sides (cf. Ezhova et al.

2017). We set zero velocity and zero buoyancy flux at

the wall.

a. Comparison between wall plume theory and DNS
results: Estimates of drag and entrainment
coefficients using the wall plume theory

The DNS results show that a wall plume indeed

behaves similarly to a wall jet, being wider in the di-

rection parallel to the wall and narrower perpendic-

ular to the wall, as illustrated by Fig. 1 (top- and

bottom-right panels).

The volume and momentum fluxes are computed

at horizontal cross sections at each vertical z level as

Q5
ðð
U dx dy and M5

ðð
U2 dx dy. The nondimen-

sional mean vertical velocity U is an average over 50

nondimensional time units (the eddy turnover time near
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the top boundary is approximately 2 time units for the

wall plume and 1.7 for the conical plume, where time is

nondimensionalized using t5 ~b0/~u0). The values for a

half-conical free plume are obtained by dividing by 2 the

values from a conical plume.

The volume flux of the wall plume is almost identical

to half of the volume flux pertaining the conical plume,

whereas away from the source the momentum flux

of the wall plume is reduced by approximately 15%

when compared with that of the free plume as a result

of the wall friction (Fig. 2). A similar result, that is,

same volume fluxes and significant reduction of mo-

mentum flux in the presence of a wall, has been re-

ported for three-dimensional turbulent wall jets by

Namgyal and Hall (2016). In agreement with the mod-

ifiedMTT theory solutions for wall plumes (dashed lines

in Fig. 2), the volume and momentum fluxes increase

with distance from the source as Q ; z5/3 and M ; z4/3

(see the online supplementary material for a detailed

derivation).

The equivalent plume radius is calculated at each

vertical z level as b 5 [(2Q2)/(pM)]1/2, and, using the

relationship b5 (6/5)az, we determine the entrainment

coefficient a for the two cases considered (Fig. 3). The

entrainment coefficient pertaining to the wall plume is

slightly larger than that for the conical plume: aw 5
0.110 and a5 0.102, respectively. Using the entrainment

coefficients, we therefore proceed with the estimate of

the drag coefficient by means of Eqs. (8) and (10). As

discussed above, we neglect the second term on the rhs

of Eq. (10) and use the far-field formulations of Eqs. (8)

and (10) to obtain the ratio M5/2/Q2 for both free and

wall plumes, which is given by the slope of the two

curves in Fig. 3 (right panel). The ratio of these two

slopes,

�
11

5C
d

2pa
w

�
a
w

a
5 15:2/9:6 ,

gives a value of the drag coefficient of Cd ’ 0.065, which

is an order of magnitude larger than that for a bound-

ary layer flow over a flat plate at a similar Reynolds

number.

The most striking result of the simulations, which was

not expected given the complex dynamics of the wall

plume, is the similarity of the volume fluxes for a wall

plume and one-half of a conical plume (Fig. 2, left). In

light of the latest works on jet and plume turbulence

FIG. 1. (left) Wall plume visualized by the density contour r5 (~r2 ~rpl)/(~ramb 2 ~rpl)5 0:99, where ~rpl is the plume density and ~ramb is

the density of the ambient fluid. (top right) Mean vertical velocity at the cross-section z5 20 normalized with the maximum velocity in

this cross section. (bottom right) Characteristic radii of the wall plume b1/2 in the x and y directions vs vertical coordinate z; b1/2
is defined as the radius at which the mean maximum velocity is halved. Best fits of the data for z $ 10 have the slopes sx 5 0.036 and

sy 5 0.157.
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(e.g., Burridge et al. 2016), one may speculate that

the turbulent structures defining the entrainment in

a wall plume remain similar to those in a conical

plume, while only the shape of the plume ‘‘boundary’’

changes. To support this hypothesis, the maximum

velocities in the free and wall plumes are similar, and

the geometric scales of the fluctuations of the plume

boundaries are similar (Fig. 4). However, the wall acts

to reduce the average velocity in the wall plume as

compared to the conical plume (Fig. 2), and, given the

similarity of volume fluxes, the equivalent plume ra-

dius at any given height must be larger for a wall plume

(Fig. 3, left panel). Given b 5 (6/5)az, the latter

produces an increase in entrainment coefficient for a

wall plume.

b. Estimates of the drag coefficient for a wall plume
using the measured velocity profiles

To support the finding that the drag coefficient for a

wall plume is an order of magnitude larger than that

for a boundary layer flow over a flat plate, we estimated

the drag coefficient from the mean velocity profiles at

two different z cross sections: z 5 15 and z 5 18.

We fitted the velocity profiles in the vicinity of the wall

with a linear function to get the slope defining the tur-

bulent stresses (or friction velocity). The fitting function

FIG. 3. (left) Free and wall plume radii (equivalent plume radius for the wall plume). Lines indicate the radius

solution b 5 (6/5)az for two different values of the entrainment coefficient; (right) M5/2 vs Q2 for the free and

wall plumes.

FIG. 2. (left) Volume flux and (right) momentum flux vs the vertical coordinate for the half-conical free and

wall plumes. The volume flux of the wall plume is almost identical to one-half that of the conical plume; hence,

the two symbols lie on top of each other and the circles in the left panel are underneath the squares. Solid

curves indicate the asymptotic scaling following from the classical MTT theory and are valid for the conical

plume; dashed curves indicate the asymptotic scaling following from the modified MTT theory and are valid

for the wall plume (see the online supplementary material). Both theories give Q ; z5/3 and M ; z4/3. The

difference is in the coefficients: Qw/Q5 (aw/a)
4/3(11 5Cd/2paw)

21/3 5 0:97 (dashed and solid curves are on top

of each other in the left panel);Mw/M5 (aw/a)
2/3(11 5Cd/2paw)

22/3 5 0:82, with Cd, a, and aw obtained from

DNS in our study.
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is U5 x(Re0u
2

*), corresponding to the inner scaling in

the viscous sublayer. Then it is straightforward to calcu-

late the viscous scale xy 5 (Re0u*)
21. Figure 5 displays

the velocity profiles in the inner coordinates x1 5 x/xy
and U1 5 U/u* at fixed y coordinate and in the cross

sections z 5 15 and z 5 18. Note that u* and xy are dif-

ferent for the profiles at different fixed y coordinates. We

also show the (U1 5 x1) dependence, characteristic of

the viscous sublayer, and the classical log-law dependence

[U1 5 ln(x1)/0.41 1 5].

As can be seen, all of the velocity profiles follow the

dependence typical of a viscous sublayer up to x1’ 5, in

agreement with other studies on turbulent boundary

layers (e.g., Monin et al. 1971). However, farther from

the wall all of the velocity profiles are lower than the

classical log-law dependence. Note that even for the

simpler case of a plane wall jet there is a discrepancy in

log-law constants in different studies (e.g., Banyassady

and Piomelli 2015); not all studies report the classical

values for the parameters of k5 0.41 and B5 5. We are

not aware of any studies comparing the log-law de-

pendence with the velocity profiles in 3D plumes or jets.

However, the boundary layer structure of a 3D plume is

more complicated when compared to that of a 2D flow.

The maximum of the wall-parallel velocity in each cross

section y 5 const moves farther away from the wall as

the flow propagates in the z direction and also moves

farther away from the wall in each cross section z5 const

as the plume spreads horizontally, at jyj . 0. Similar be-

havior is reported by Namgyal and Hall (2016) for a 3D

wall jet. This can be considered as a smooth detachment of

the flow from the wall and, in analogy with the separating

(Falkner–Skan) boundary layer, might be the reason for

the lowermeanwall-parallel velocity in the log-law zone as

compared with the classical boundary layer flow.

Table 1 summarizes the drag coefficients on the basis

of the maximum vertical velocity for each profile:Cdm5
(u*/Umax)

25 0.008–0.024. Further, we estimate the drag

coefficients, given by Cd 5 (u*/u)
2, for all of the profiles

on the basis of the cross-sectional average vertical ve-

locity, as used in the modified MTT theory. The cross-

sectional average vertical velocity, defined as u 5 M/Q,

yields u15 5 1.45 and u18 5 1.39 in the cross sections at

z 5 15 and z 5 18, respectively. The drag coefficient

Cd can be estimated from the friction velocity asÐ
u2

* dy5 2Cdbu
2. Introducing the local drag coefficient

for each cross section, given byCd,loc(y)5 [u*(y)/u]
2, one

can obtain
Ð
Cd,loc(y) dy5 2Cdb. We have values of Cd,loc(y)

in seven y cross sections [the drag coefficient is calcu-

lated at y 5 0, 1, 2, and 3, and, because of symmetry,

Cd,loc(2y) 5 Cd,loc(y)]. Therefore, with the distance

Dy 5 1 between the different cross sections, one can get

an estimate for the integral:ð
C

d,loc
(y) dy’�C

d,i
Dy5 (7Dy)

�
�C

d,i
/7
�
5C

d,avg
2B ,

where 2B 5 7Dy and Cd,avg is the average value of the

local drag coefficient (see Table 1 for Cd,i). Thus, Cd 5
Cd,avg(B/b) ’ 0.04 both for z 5 15 and z 5 18, which is

lower but still of the same order as the results obtained

in section 3a using the modified MTT equations. It is

important to note that the value of the drag coefficient

depends on the choice of the reference velocity Uref, as

follows from its definition [i.e., Eq. (1)]. Using the

maximum and average vertical velocity as the reference

velocity in the calculation above leads to differences in

the drag coefficient of a factor of 3, a significant dif-

ference comparable to that obtained when changing

the Reynolds number by three–four orders of magni-

tude. Hence, the choice of the drag coefficient should

be consistent with the choice of the reference velocity

FIG. 4. Statistics of the turbulent plume boundary location at

z 5 15: (top) wall plume and (bottom) one-half of a conical

plume. The figures illustrate the frequency of finding the plume

boundary at a certain location (in a square of 0.1 3 0.1). Given

the turbulent structure of the plume, the boundary is not always

a single simple closed curve, because it encompasses turbulent

eddies. The plume boundary is defined by the contour of density

r5 (~r2 ~rpl)/(~ramb 2 ~rpl)5 0:97, where ~rpl is the plume density

and ~ramb is the density of the ambient fluid.
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when employing the MTT equations to obtain the

subglacial discharge plume vertical velocity used in the

melt parameterization.

c. Estimates of the drag coefficient for a wall jet

In this section, we estimate the drag coefficient

using the experimental data obtained for a three-

dimensional wall jet by Namgyal and Hall (2016). The

drag is defined by the turbulent shear stresses, which

have been observed to be similar for conical jets

and plumes (van Reeuwijk et al. 2016); therefore, one

could expect similar results for wall jets and plumes.

These estimates can be used to test the sensitivity of

the results to the Reynolds number, which in the ex-

periment is Re 5 250 000, that is, two orders of

magnitude larger than in the DNS discussed in this

section.

The solution of Eq. (9) for a turbulent jet is

M5M
0
(Q

0
/Q)

2Cd
pawj , (13)

FIG. 5. (left) Horizontal cross sections and (right) profiles of the mean velocity parallel to the wall U 5 (hui2 1 hyi2)1/2 in the inner

coordinates at different y locations for (top) z 5 15 and (bottom) z 5 18.
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where awj is the wall jet entrainment coefficient. The

above expression gives the momentum flux evolution

with distance from the source:

M5M
0

" ffiffiffiffiffiffi
2p

p
a
wj

 
11

C
d

pa
wj

!
M1/2

0 Q21
0 z

#2 2Cd
pawj

1�
11

Cd
pawj

�
.

(14)

Opposite to the wall plume results, the evolution of the

wall jet ‘‘equivalent’’ radius involves a dependence on

the drag coefficient:

b
wj
5

ffiffiffiffiffiffiffiffiffi
2Q2

pM

r
5 2a

wj

 
11

C
d

pa
wj

!
z .

The equivalent radius andmomentum flux of the wall jet

from the experiment of Namgyal and Hall (2016) are

shown in Fig. 6. A best fit of the data in the far field

allows us to determine the entrainment coefficient awj’
0.052, which is lower when compared with the typical

entrainment coefficient for a round jet found in the lit-

erature of 0.065 , aj , 0.082 (e.g., Fischer et al. 1979),

and the drag coefficientCd’ 0.032, larger than for a flat-

plate boundary layer. The difference in Cd for the wall

plume (Cd 5 0.065) and jet (Cd 5 0.032) can be related

to the difference in Reynolds number between the

simulations (Re 5 1000–2000) and the experiments

(Re 5 250 000) and probably to near-wall buoyancy

effects, absent in the case of wall jets.

d. Implications of the results for the estimates of
submarine glacier melt rates

The drag coefficient obtained in our study is 6.5 times

the value used by Slater et al. (2016) (Cd5 0.01), is much

higher than that used by Cowton et al. (2015) (Cd 5
0.0025), and is in general an order of magnitude larger

than that for a boundary layer flow over a flat plate. A

large drag coefficient is expected given the relatively low

Reynolds numbers; however, the difference is too large

to be explained exclusively by the effect of the Reynolds

number. The well-known von Kármán law for the

boundary layer flow over a flat plate is

1ffiffiffiffi
c
f

p 5
1

k
ffiffiffi
2

p [ln(Re
z

ffiffiffiffi
c
f

p
)1B

5
] ,

where B5 5 1.7, Rez 5 Uz/n, and cf 5 2Cd (Monin et al.

1971). If, for example, we take the cross section at z5 15

in the region with developed turbulence, the mean ver-

tical plume velocity increases by a factor of 1.5 from its

initial value, and we obtain Rez ’ 20 000. For this

Reynolds number the drag coefficient obtained from the

above von Kármán law for a flat plate is approximately

Cd 5 0.005, an order of magnitude lower than what we

obtain in the simulations. Hence, the simulation results

and the reasoning above suggest that also for larger Re

we should expect an increased drag coefficient for a wall

TABLE 1. Parameters of the logarithmic near-wall flow for two

z cross sections.

Parameter y 5 0 y 5 1 y 5 2 y 5 3

z 5 15

u* 0.30 0.26 0.19 0.13

xy 0.0033 0.004 0.005 0.008

Umax 3.38 2.72 1.80 0.84

Cdm 0.008 0.009 0.011 0.024

Cd,i 0.043 0.033 0.018 0.008

z 5 18

u* 0.28 0.25 0.20 0.15

xy 0.0036 0.004 0.005 0.0065

Umax 3.10 2.59 1.90 1.27

Cdm 0.008 0.009 0.011 0.015

Cd,i 0.041 0.033 0.021 0.012

FIG. 6. (left) Equivalent wall jet radius vs vertical coordinate. (right) Momentum flux vs vertical coordinate.

Dashed and solid curves represent approximations to near-field and far-field data, respectively. The data are taken

from the wall jet experiment by Namgyal and Hall (2016).
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plume. This increase in Cd is a critical factor in the

current parameterization for submarine melting.

The present study suggests that Cd 5 0.001 is an in-

appropriate estimate of the drag coefficient when using

the modified MTT model with a top hat velocity profile.

The drag decrease with increasing Reynolds number can

be expected to be similar to that following from the von

Kármán law and reliably quantified for the boundary

layer flow over a flat plate (e.g., Monin et al. 1971). The

von Kármán law suggests a decrease by a factor of 4–5

of the drag coefficient from the low (Re ’ 104) to high

(Re ’ 109) Reynolds numbers; thus, the value of Cd 5
0.065 obtained for Rez 5 20 000 corresponds to a value

Cd5 0.01–0.02 for the large Reynolds numbers, relevant

to geophysical flows. This is in agreement with the value

0.01 used by Slater et al. (2016). Note that the lower

value of the drag coefficient due to a larger Re obtained

for a wall jet in section 3c is also consistent with that

predicted by the vonKármán law. In addition, given that
some important phenomena, such as sediment load

within the subglacial discharge plumes and glacier sur-

face roughness, are not considered in our study, the drag

coefficient relevant to geophysical flows is likely larger

than 0.01–0.02.

We finally discuss the implications of the larger value

of the drag coefficient obtained using the modifiedMTT

theory, which is often implemented to calculate the

subglacial discharge plume velocity used in themelt-rate

parameterizations. From the three-equation melt for-

mulation (Holland and Jenkins 1999), the melt rate is

proportional to the friction velocity or, using Eq. (1), to

themean vertical plume velocity: _m’ uC1/2
d , whereCd5

0.01 is used by Slater et al. (2016) [0.0025 by Cowton

et al. (2015)] and u can be obtained from MTT theory

neglecting the wall effects. Within the same framework,

improved with Eq. (12) to account for the presence of

the wall, the melting rate can be written as

_m
w
’ u

�
a

a
w

�2/3
C1/2

d

11
5C

d

2pa
w

� �1/3
,

with the velocity u fromMTT theory without a wall. This

dependence of the melt rate on the drag coefficient is

illustrated in Fig. 7, with themelt rate normalized by that

obtained with the frequently used drag coefficient Cd 5
0.0025. Thus, the estimate of melt rate for Cd 5 0.01–

0.02 is more than 2 times that obtained using Cd 5
0.0025. Moreover, from van Kessel and Kranenburg

(1996), it follows that up to a factor-of-3 increase in the

drag coefficient can be expected when sediments are

present in the flow. Thus the melt rate can grow further

to yield as much as;4–5 times that forCd5 0.0025 if the

sediment load and a roughness of the glacier surface are

taken into account. Given the nonnegligible change in

melt rates, additional investigations are therefore needed

to characterize the dependence of Cd on Reynolds

numbers and its sensitivity to the sediment load.

4. Conclusions

We have shown that classical plume theory can form

the basis of improved models of three-dimensional wall

plumes if the wall drag is accounted for and the en-

trainment coefficient is corrected. The volume flux

evolution of a wall plume is well captured already by

considering one-half of that obtained for a conical

plume, which implies that the dilution of the wall plume

fluid, that is, the salinity and temperature evolution with

depth, should also be predicted reasonably well when

neglecting drag effects. The difference is only in the

momentum flux, which is overestimated by about 10%–

20% if the wall drag is not accounted for. However, the

coefficients parameterizing turbulence effects for en-

trainment, drag, and scalar transfer are important for the

predictions of melting rates, because these coefficients

appear in the widely used three-equation melt formu-

lation (Holland and Jenkins 1999). We have shown

that a consistent estimate of the drag coefficient that is

based on the modifiedMTT theory plume velocity and a

corrected vertical velocity for wall plumes that takes

into account a nonnegligible drag coefficient [Eq. (12)],

substantially increase the predictions for melting rates

near an ice wall. Furthermore, we have shown for the

first time that the wall plume spreads horizontally par-

allel to the wall and loses its axisymmetric shape (Fig. 1,

top- and bottom-right panels). This important aspect

will produce an increase in melting when compared with

that obtained with a half-conical plume because of the

larger area covered on an ice face by the wall plume.

FIG. 7. Melt-rate dependence on the drag coefficient. The melt rate

is normalized by that obtained using Cd 5 0.0025.
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Adding the mass and buoyancy fluxes associated with

melting into the wall plume model is not expected to

alter our results significantly. In general, a subglacial

discharge is characterized by a volumefluxQ’ 100m3s21,

corresponding to a ‘‘convection-driven melting’’ regime

(Jenkins 2011), in which the contribution of submarine

melting to the plume buoyancy is small. It is only for a

small discharge,;10m3 s21 (Mankoff et al. 2016; Ezhova

et al. 2017), that the effect of submarine melting on the

plume buoyancy flux cannot be neglected. Both drag and

entrainment are mainly influenced by the turbulent

characteristics of the wall plume, which, for substantial

subglacial discharges, should remain unchanged.

Our study shows that the increase inCd for a modified

MTT model of a three-dimensional wall plume at large

Reynolds numbers can be as high as 10 times as com-

pared with that associated with a 2D turbulent boundary

layer flow (Cd 5 0.001) and, thus, cannot be ignored

while calculating melting rates.
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