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ABSTRACT

The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by

means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a

thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the

jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to

1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment,

jet oscillations, and the generation of internal waves are examined. Themean jet penetration is predicted well

by a simple model based on the conservation of the source energy in the thermocline. The entrainment

coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a

sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal

the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the en-

trainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet

oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed

Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the

higher peak exceeds themaximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the

internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is

observed at higher Froude numbers.

1. Introduction

This study focuses on the dynamics of an axisym-

metric vertical turbulent jet in a stratified fluid. Vertical

turbulent jets may serve as models of numerous flows

both in nature and industry (see, e.g., Turner 1973; List

1982; Hunt 1994), including effluents from submerged

wastewater outfall systems in the ocean (e.g., Jirka and

Lee 1994), convective cloud flows in the atmosphere,

pollutant discharge from industrial chimneys, and sub-

glacial discharge from glaciers (e.g., Straneo and

Cenedese 2015). The stratification considered is two

layers of homogeneous fluids of different temperature

separated by a relatively thin layer with a temperature

jump—a thermocline. This configuration is a typical

model of the upper thermocline layer in lakes, the pyc-

nocline in the ocean, as well as thermal inversions in the

atmosphere, when the sharp gradient of the scalar pre-

vails significantly over the scalar change in the layers.

The dynamics of vertical jets is governed mainly by

their volume, momentum, and buoyancy fluxes, where

the buoyancy of a jet is defined by the density difference

between the jet and the surrounding medium, normal-

ized by gravity. If the flow density is less than the density

of the surrounding medium then the jet is positively

buoyant; if it is heavier, the jet is negatively buoyant,

while it is neutrally buoyant if the densities are equal. In

general, all the examples of turbulent jets in nature and

industry mentioned above result from mixed sources of
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buoyancy and momentum (as a rule they are positively

buoyant). However, jets effectively entrain the sur-

rounding fluid; hence, when the source is located far

enough from the pycnocline, the density of the flow at

the pycnocline entrance is almost equal to the density of

the lower layer of stratification. The dynamics of such

a flow in the pycnocline can therefore be modeled

employing a neutrally buoyant turbulent jet with posi-

tive vertical momentum in the lower stratification layer.

In other words, an initially buoyant jet in the pycnocline

can be modeled employing a neutrally buoyant jet,

provided they have the same velocity and radius at the

entrance of the pycnocline. The turbulent jet considered

here results from a momentum source of the same fluid

as in the lower layer of stratification. When entering the

thermocline, it becomes a negatively buoyant jet, that

is, a fountain.

Stationary regimes of turbulent fountains have been

extensively investigated in both homogeneous and

linearly stratified media (Turner 1966; List 1982;

Bloomfield and Kerr 1998, 2000; Kaye and Hunt 2006;

Burridge and Hunt 2012, 2013), revealing the de-

pendency of the mean penetration height and of the

entrainment coefficient on the different parameters of

the problem. The behavior of an axisymmetric, miscible,

Boussinesq fountain in a homogeneous fluid is defined

by the Reynolds number Re 5 U0R0/n (U0 is the inflow

velocity, R0 is the nozzle radius, and n is the fluid kine-

matic viscosity) and the Froude number Fr5U0/
ffiffiffiffiffiffiffiffiffi
g0R0

p
(with g0 5 gDr/r0, the reduced gravity, and Dr is the

density difference between source and ambient fluid).

The Reynolds number determines whether the fountain

is laminar or turbulent, while the Froude number char-

acterizes the ratio between momentum flux M0, buoy-

ancy flux F0, and volume fluxQ0 of the fountain. Indeed,

it can be rewritten, following Kaye and Hunt (2006), as

Fr;M5/4
0 /Q0F

1/2
0 . The Froude number can also be in-

terpreted as the ratio between two length scales:

l;M3/4
0 /F1/2

0 , known as the momentum jet length (Turner

1966), and R0 ;Q0/M
1/2
0 , corresponding to the initial ra-

dius of the jet. Using theoretical considerations and ex-

perimental validations, Kaye and Hunt (2006) classified

fountains according to their Froude number as very weak

(Fr& 1), weak (1& Fr& 3), and forced (Fr* 3). Later

Burridge and Hunt (2012, 2013) extended the classifica-

tion using more experimental data, further dividing

‘‘weak fountains’’ into weak and intermediate, with a

change from weak to intermediate fountains at Fr’ 1.7.

The behavior of forced fountains in a homogeneous fluid

is governed by the momentum and buoyancy fluxes, and

the mean penetration height, here denoted hz, is there-

fore proportional to the momentum jet length hz/R0; Fr

(Turner 1966). For weak fountains, instead, all three

fluxes are important, and dimensional analysis gives a

penetration hz/R0 ; Fr2 (Kaye and Hunt 2006; Burridge

and Hunt 2012). Finally, very weak fountains are hydrau-

lically controlled, and estimates at large Reynolds num-

bers give hz/R0; Fr2/3 (Kaye andHunt 2006; Burridge and

Hunt 2012).

In a linear stratification, dimensional considerations

yield a penetration height hz/R0 ; Fr1/2 for forced

fountains with zero initial buoyancy flux (McDougall

1981; Bloomfield and Kerr 1998). In general, however,

the rise height of a fountain in a stratified fluid depends

on the density profile and requires more complicated

numerical models based on the conservation laws for the

momentum, volume, and buoyancy fluxes of the jet

(Morton et al. 1956; Bloomfield and Kerr 2000).

Instabilities are observed for fountains in a homoge-

neous fluid, and this oscillatory motion has become the

object of research only recently (Friedman 2006;

Friedman et al. 2007; Williamson et al. 2008; Burridge

and Hunt 2013). The dynamics of a fountain in a ho-

mogeneous fluid is, analogously to themean penetration

height, fully controlled by the Froude and Reynolds

numbers. It has been demonstrated experimentally that

weak fountains can undergo oscillations with amplitudes

comparable to their heights and well-defined frequen-

cies. The oscillatory dynamics of fountains in stratified

fluids is, however, mostly unexplored. Interestingly, the

only experimental investigation in a linear stratification

has shown no direct connection between the frequency

of the fountain oscillations and the frequency of internal

waves (Ansong and Sutherland 2010).

A behavior similar to the oscillatory dynamics of weak

fountains has been revealed in pycnocline-like stratified

fluids while modeling submerged wastewater outfall

systems in the ocean (Troitskaya et al. 2008). Turbulent

buoyant plumes discharged horizontally into oceanic

saltwater gain vertical momentum due to their positive

buoyancy while they propagate in the lower layer of

stratification. At the same time, they are mixing in-

tensively with the surrounding fluid owing to the tur-

bulent entrainment. At the entrance to the pycnocline,

these jets have density close to the density of the lower

layer of stratification and a nonzero vertical momentum,

thus forming fountains. These fountains are capable of

generating internal waves in a pycnocline through their

oscillations. This effect has been demonstrated experi-

mentally, by means of laboratory-scale modeling of

wastewater outfall systems, and later numerically

(Druzhinin and Troitskaya 2012, 2013) both for laminar

and turbulent fountains/jets in two-layer, stratified fluid

with a thin pycnocline (i.e., in the presence of a rather

sharp density jump compared to the jet diameter at the

pycnocline entrance).
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As mentioned earlier, fountains in a linear stratified

fluid do not show pronounced oscillations, while foun-

tains in a two-layer fluid are characterized by strong

oscillations. Thus, in addition to the Reynolds and

Froude number, with all these parameters taken in the

vicinity of the pycnocline, the ratio of the pycnocline

thickness to the jet diameter is expected to play an im-

portant role. Therefore, the aim of this paper is to

understand the influence of the ratio ‘‘pycnocline

thickness/jet diameter’’ on the dynamics of a turbulent

fountain and on the generation of internal waves, using

data from well-resolved, large-eddy simulation (LES).

Since the pycnocline is subject to seasonal variability

(Kamenkovich and Monin 1978; Knauss 2005; Stewart

2008), this ratio is expected to change throughout the

year, making this a relevant question in oceanography.

Previous numerical investigations (Druzhinin and

Troitskaya 2012, 2013) investigated a similar configu-

ration but focused on a thin pycnocline in comparison to

the jet diameter at the pycnocline entrance. However,

field measurements and results of modeling employing

nonhydrostatic general circulation models reveal that

they are mostly of the same size (Sciascia et al. 2013;

Troitskaya et al. 2008). In this paper, we compare jet

dynamics in two different stratifications: one with a thin

thermocline, analogous to Druzhinin and Troitskaya

(2013), and the other with a thermocline thickness close

to the jet diameter at the thermocline entrance. The

latter case, for the thermocline Froude numbers 0.87–

1.16, reproduces the conditions of laboratory experi-

ments investigating the generation of internal waves

by a turbulent jet (Ezhova et al. 2012). Note that the

parameters of the jet at the entrance to the thermocline

in the experiments matched the parameters of the

laboratory-scale modeling of the real wastewater outfall

system in winter conditions (Troitskaya et al. 2008). In

summer, convection in the upper layer is weak, gov-

erned mainly by the surface wave breaking and mixing

due to the wind; together with the increased tempera-

ture difference between upper and lower layers this re-

sults in the sharpening of the pycnocline and its moving

closer to the surface. As a result, for the same source

location, the radius of the jet at the pycnocline entrance

increases and the vertical velocity decreases; some

qualitative conclusions about the jet dynamics in these

conditions can therefore be drawn from the present re-

sults for the thin thermocline and low Froude numbers.

The jet dynamics in the thermocline is relevant for

turbulent mixing of the jet with the surrounding media.

This important question has been before investigated

for a jet in two-layer stratification with a density in-

terface experimentally (Cotel et al. 1997; Lin and

Linden 2005) and theoretically (Shrinivas and Hunt

2014, 2015). In this study, we investigate the mean flows

in the thermocline and compare the entrainment flux of

the jet in stratifications characterized by a finite thick-

ness of the thermocline with the results of the theoretical

model by Shrinivas and Hunt (2014).

The paper is organized as follows: Section 2 contains

the relevant equations and a brief description of the LES

model. The test case of a turbulent jet in a homogeneous

medium is described, and the setup of the simulations

for a stratified case is discussed. Section 3 is devoted to

the results of the simulations: in the first part, we in-

vestigate the penetration height and turbulent entrain-

ment of the jet in a stratified medium and discuss the

dynamics of the jet in the thermocline. The generation of

the internal waves is presented in the second part. Our

conclusions are given in section 4.

2. Governing equations and numerical method

We consider a jet in an unconfined fluid with a stable

thermal stratification. The dynamics of a jet in a strati-

fied fluid is governed by theNavier–Stokes equations for

an incompressible fluid with the Boussinesq approxi-

mation to model the buoyancy effects and a transport

equation for the temperature field. To carry out a pa-

rameter study like that presented here, we resort to LES

to reduce the computational costs. In a LES, the large

turbulent eddies are fully resolved, whereas the effect of

the smallest scales, those not resolved on the computa-

tional mesh, is modeled. A filter is applied to derive an

equation for the resolved scales that reads in di-

mensionless form and in a Cartesian coordinate system:

›u
i

›t
1 u

j

›u
i

›x
j

52
›p

›x
i

1
1

Re

›2u
i

›x2j
1

1

Fr2
(T2T 0

s)diz2
1

Re

›t
ij

›x
j

,

(1)

›T

›t
1 u

j

›T

›x
j

5
1

RePr

›2T

›x2j
2

1

Re

›Q
j

›x
j

, and (2)

›u
i

›x
i

5 0. (3)

The equations are made dimensionless with the initial

jet diameterD0, the jet maximal inflow velocity U0, and

the temperature difference between the stratification

layers DT. Nondimensional coordinates xi stand for x, y,

and z, and nondimensional velocity components ui stand

for ux, uy, and uz.We define the profile of stratification as

T 0
s 5 (Ts 2T0)/DT, where Ts is the undisturbed tem-

perature profile, and T0 is the temperature of the lower

layer of stratification. The hydrostatic pressure com-

ponent associated with T 0
s is subtracted from the full

pressure to get p in our system. We define the Reynolds
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number Re5U0D0/n; the Froude number Fr5U0/
ffiffiffiffiffiffiffiffiffi
g0D0

p
,

with g0 5 gDr/r0 ’ gaTDT as the reduced gravity (here

aT is the thermal expansion coefficient); and the Prandtl

number Pr 5 n/k, where n is the fluid kinematic viscosity

and k is the thermal conductivity. The terms tij andQj are

the fluxes representing the subgrid Reynolds stresses and

turbulent heat transport.

To model the subgrid-scale stresses, we employ the dy-

namic Smagorinsky model (Smagorinsky 1963; Germano

et al. 1991) that has been successfully used in the simula-

tions of buoyant flows by several authors (e.g., Pham et al.

2006, 2007). The subgrid-scale stresses are expressed as

t
ij
522n

t
S
ij
, S

ij
5

1

2

 
›u

i

›x
j

1
›u

j

›x
i

!
, and (4)

Q
j
52

n
t

Pr
t

›T

›x
j

. (5)

In the spirit of the Prandtl mixing length model, the

subgrid-scale viscosity is given by the formula

n
t
5 (C

s
D)2jS

ij
j , (6)

where D 5 (DxDyDz)1/3 and Cs is the Smagorinsky co-

efficient, related to the dynamic Smagorinsky constant

by Cs 5
ffiffiffiffiffiffi
Cd

p
. The idea underlying the dynamic Sma-

gorinsky model is that the small eddies of the large

structures that are still resolved in the computations are

statistically analogous to the subgrid-scale eddies. Thus,

an additional filter, the test filter, is used to separate the

resolved turbulent spectrum and calculate dynamically

the Smagorinsky constant Cd [for more detail see

Germano et al. (1991)].

In our simulations, the jet is generated by a round

source of diameter D0 with an initial vertical velocity

profile

U
i
520:5 tanh

r2 0:4

0:05
1 0:5, (7)

where r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
, with x and y the horizontal di-

rections (see Fig. 1). The stratification of the ambient

fluid is of a thermocline type with a temperature jump at

the vertical position z 5 zp. The stratification profile is

given by

T 0
s 5

1

2
f11 tanh[g(z2 z

p
)]g , (8)

where g 5 D0/H, and H is the half-thickness of the

thermocline. The temperature of the fluid at the in-

flow is equal to the temperature of the lower stratifi-

cation layer.

a. Numerical method

The numerical simulations presented here are per-

formed with the parallel flow solver Nek5000 (Fischer

et al. 2008). The dynamic Smagorinsky model is built-in

inside this code. Nek5000 is a spectral element code with

exponential accuracy within the spectral elements. On

each element the flow variables are represented as a

superposition of Lagrange polynomials based onGauss–

Lobatto–Legendre quadrature points (GLL points). In

the present calculations, the spatial discretization is made

with polynomials of order seven, which means that each

element contains 8 3 8 3 8 grid points or GLL

points. Time discretization involves an operator-splitting

FIG. 1. (left) Domain configuration for the turbulent jet in a homogeneous fluid. The jet is

shown by the contour surface of vertical velocity uz 5 0.03. (right) An inflow velocity profile.
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method using backward differentiation of order two for

the implicitly treated viscous terms and second-order

extrapolation for the explicitly treated convective terms

(BDF2/EXT2). For stabilization, the highest two modes

of each element are slightly dampened (5%). The test

filter required for the calculations in the framework of the

dynamic Smagorinsky model affects the three highest

polynomial modes with a cutoff of 0.05, 0.5, and 0.95

(Ohlsson et al. 2010).

Among the advantages of the spectral element

method is the flexibility to construct spatially in-

homogeneous meshes. For the particular problem at

hand, one needs to resolve the small scales at the jet

inflow to accurately reproduce the region of high kinetic

energy production and the small scales in the region

where the jet impinges on the pycnocline, producing

high shears. At the same time, internal gravity waves are

characterized by long wavelengths and large-scale mo-

tions, so that a lower resolution is enough at larger dis-

tances from the jet axis.

b. Validation for the turbulent jet in a
nonstratified fluid

To validate the current implementation and be sure to

have a fully developed turbulent jet at the thermocline

entrance, we perform LES of a turbulent jet in a ho-

mogeneous fluid and compare the main flow statistics

with the data available in literature, both from experi-

ments and direct numerical simulations (DNS).

The governing equations for a turbulent jet in a ho-

mogeneous fluid reduce, after the LES filtering, to

›u
i

›t
1u

j

›u
i

›x
j

52
›p

›x
i

1
1

Re

›2u
i

›x2j
2

1

Re

›t
ij

›x
j

, and (9)

›u
i

›x
i

5 0. (10)

The jet is generated at the bottom boundary of the

computational domain and has a round shape of di-

ameter D0 with the initial velocity profile given in

Eq. (7). To trigger transition to turbulence, we add to

this laminar profile a set of 10 sinusoidal disturbances

with frequencies f distributed evenly in the range [0.05:

5], wavelengths in x, y directions changing from four

minimal distances between GLL points (Dx 5 Dy 5
0.03) to 20 times these distances, and random phases.

The amplitude of the disturbances is about 15% of the

base flow velocity at the inflow. The simulations are

performed for Reynolds number Re 5 15 000.

We solve the governing equations on a rectangular

domain of dimensions 403 40 along the horizontal x and

y axes and 42 in the vertical direction (Fig. 1).We impose a

traction-free boundary condition (open boundaries) at the

lateral boundaries and the convective boundary condition

by Orlanski (1976),

›u
i

›t
1 c

zi

›u
i

›z
5 0, (11)

at the top of the domain. Here, czi are the components of

the phase velocity that are calculated dynamically for

each velocity component at the z level adjacent to the

upper boundary and filtered over the x–y plane by a

running average. Negative values of czi are set to 0.

The mesh used is constructed following the guidelines

in Picano and Hanjalic (2012): in the region closest to

the jet inflow, x, y 2 [21.5, 1.5] and z 2 [0, 12], a better

resolution is achieved with uniform spectral elements of

size Dx 5 Dy 5 0.5 and Dz 5 0.6 (each element con-

taining 8 3 8 3 8 GLL points). From the boundaries of

this inner region, we stretch the grid by a factor 1.17

along the horizontal axes and 1.06 along the z axis. The

total number of elements used in these validation runs is

30 3 30 3 30 corresponding to ’9 million grid points.

The time step chosen for the calculation is 0.01, which

amounts to keeping the CFL number below 0.25–0.3.

The values of Cd in the model are averaged over the

vertical direction in a conical region containing the jet,

resulting in a value of the Smagorinsky coefficient Cs in

the range between 0 and 0.2, in agreement, for example,

with the values obtained in the simulations of buoyant

plumes by Pham et al. (2007). The calculations of the

statistics start approximately 100 time units after the jet

has reached the upper boundary and extend over a time

interval of over 500 dimensionless time units corre-

sponding to ’30 eddy turnover times if the character-

istic velocity and the jet diameter are taken at z 5 18.

Figure 2a displays the inverse, centerline, mean ve-

locityUc versus the vertical coordinate z to show that the

velocity follows the 1/z dependence that can be derived

from the momentum integral for a submerged turbulent

jet. The asymptotic behavior starts from z ’ 12. The

linear fit yields a slope of 0.22, corresponding to 0.165 if

recalculated for the initial top-hat velocity profile with

the same momentum and volume fluxes. This is in good

agreement with the widely assumed values of 0.16–0.17

[see, for instance, Pope (2000)].

Figure 2b displays the average z-velocity profile in the

far field of the jet in self-similar coordinates [j; r/(z2 z0),

U/Uc], where z0 denotes the location of the jet virtual

origin and Uc corresponds to the maximum velocity at

each z level. In practice, we first compute the profiles

at each z in self-similar variables and then average over

the different profiles in the range z 2 [14, 35], following

Picano and Hanjalic (2012), among others. In the fig-

ure, we include for comparison the data from two sets
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of DNS for the round and annular jets (Picano and

Hanjalic 2012; Picano and Casciola 2007) and two lab-

oratory experiments (Panchapakesan and Lumley 1993;

Hussein et al. 1994) to confirm the accuracy of the

results.

Figures 2c and 2d report the turbulent stresses hu02
z i/U2

c

and hu02
r i/U2

c in the far field of the turbulent jet together

with the data from the experiments and DNS mentioned

above. To obtain hu02
r i in the rectangular geometry, we

measure the profiles of hu02
x i along the x axis and of hu02

y i
along the y axis and then average over the positive and

negative x and y directions. We scale the profiles using

the self-similar coordinates and average among the dif-

ferent z locations as described before. It can be seen in

the figure that the agreement between the different sets

of data is good. Given these data, we consider a de-

veloped turbulent jet from z5 14 and therefore set, in the

calculations in a stratifiedmedium, the thermocline lower

boundary at z 5 20.

c. Configuration of the jet in a stratified fluid

Using the governing equations for a flow in a stratified

medium in Eqs. (1)–(3), we perform two series of sim-

ulations with the stratification profile in Eq. (8). The first

set assumes g 5 2 and zp 5 20.5, which corresponds to a

relatively thin thermocline since the jet diameter at the

entrance to the thermocline is approximately 4–5, as

shown by the simulation of a turbulent jet in homogeneous

medium presented in the previous section. Indeed, for

g 5 2 the thermocline is 4–5 times thinner than the di-

ameter of the jet. The second set of simulations assume

g 5 0.5 and zp 5 22, which we will denote as the thick

thermocline; in this case, the thermocline thickness is ap-

proximately the same as the jet diameter at the thermo-

cline entrance. In both series we perform calculations for

five different Froude numbers (Fr5 7, 10, 13, 16, and 22).

Better definitions of the Froude number and g may

consider values at the entrance to the thermocline,

which is defined from the simulations at approximately

z 5 18 (as it will be seen from what follows), corre-

sponding to Frt 5 0.6, 0.86, 1.11, 1.37, and 1.89 fhere
Frt 5 ut/

ffiffiffiffiffiffiffiffiffi
g0Rt

p
, where ut and Rt are the mean jet velocity

and radius [Shrinivas and Hunt (2014)], ut 5 0.5Umax

with the corresponding Rt at this levelg. We define the

ratio of the jet radius at the thermocline to the ther-

mocline thickness, gt 5 Rt/H. For the thick thermocline

gt ffi 1, while for the thin thermocline gt ffi 4.

The choice of Frt; 1 is justified by the observations by

Burridge and Hunt (2013) of the sudden jump in the

amplitude and frequency of the fountain top oscillations

FIG. 2. (a) Inversemean centerline velocity as a function of the distance from the nozzle (black dots indicate LES

data, gray indicates theory). (b) The far-field z-velocity profile, (c) turbulent stresses hu02
z i/U2

c , and (d) hu02
r i/U2

c . The

data for comparison are available from the following papers: DNS round can be found in Picano and Casciola

(2007), DNS annular can be found in Picano and Hanjalic (2012), exp Re5 11 000 can be found in Panchapakesan

and Lumley (1993), and exp Re 5 95 000 can be found in Hussein et al. (1994).
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in a homogeneous fluid. Note, however, that the Rey-

nolds number in the experiments of Burridge and Hunt

(2013), Re ’ 1000–3500, is significantly lower than in

our simulations. The experimental investigation of tur-

bulent jets in a stratified fluid by Ezhova et al. (2012)

corresponds to Frt ; 1 and Re ; 10 000. Given that the

diameter of the jet in the experiments was comparable

to the thermocline width, we in fact reproduce these

experimental conditions in the setup with the thick

thermocline.

The coefficient of the dynamic Smagorinsky modelCd

is averaged over the vertical direction from z5 0 to the

maximum fountain penetration point for r, 5 and from

z5 17 to the upper boundary of the thermocline for r.
5, resulting in the same range of the Smagorinsky co-

efficient 0,Cs5
ffiffiffiffiffiffi
Cd

p
, 0.2 as for the test case with a jet

in homogeneous fluid (section 2b). We use open

boundary conditions on all the boundaries except the

inflow where we impose the velocity profile of Eq. (7).

On the lateral boundary, we also use a sponge layer to

damp the vertical velocity component and the temper-

ature fluctuations. The length of the sponge layer is 5 in

the simulations with the thin thermocline and 7 in the

simulations with the thick thermocline.

The mesh used for the stratified case has the same

stretching as in the test case of a jet in homogeneous

fluid in the x and y directions, though in a wider domain

to be able to capture the internal waves propagating in

the thermocline. However, we refine the mesh and in-

crease the vertical resolution at the thermocline and in

the upper layer of the stratification approximately up to

the penetration height of the fountain to maintain a

well-resolved LES. The parameters pertaining to all

simulations are summarized in Table 1, where we also

report the case used for the validation with increased

resolution discussed in the appendix (denoted as test).

The resulting flow is displayed in Fig. 3 for the thick

thermocline at Fr 5 22.

TABLE 1. Parameters of the simulations of a jet impinging on a thin or thick thermocline. The nominal Froude number is Fr5U0/
ffiffiffiffiffiffiffiffiffiffi
g0D0

p
,

while the thermocline Froude number Frt 5ut/
ffiffiffiffiffiffiffiffiffi
g0Rt

p
uses the jet mean radius and velocity at z 5 18 [for comparison with Shrinivas and

Hunt (2014, 2015)]; g 5 D0/H indicates the inverse thickness of the thermocline.

Fr (Frt) g Domain size No. of spectral elements No. of grid points

7 (0.60) 2 80 3 80 3 31 38 3 38 3 36 26 615 808

10 (0.86) 2 80 3 80 3 31 38 3 38 3 36 26 615 808

13 (1.11) 2 80 3 80 3 32 38 3 38 3 38 28 094 464

Test 13 (1.37) 2 80 3 80 3 32 48 3 48 3 45 53 084 160

16 (1.37) 2 80 3 80 3 33 38 3 38 3 42 31 051 776

22 (1.89) 2 95 3 95 3 37 40 3 40 3 52 42 598 400

7 (0.60) 0.5 95 3 95 3 32.5 40 3 40 3 33 27 033 600

10 (0.86) 0.5 95 3 95 3 33.5 40 3 40 3 35 28 672 000

13 (1.11) 0.5 95 3 95 3 34.5 40 3 40 3 36 29 491 200

16 (1.37) 0.5 95 3 95 3 35.5 40 3 40 3 37 30 310 400

22 (1.89) 0.5 95 3 95 3 40.5 40 3 40 3 45 36 364 000

FIG. 3. Illustration of the jet in a stratified fluid by surfaces of constant vertical velocity and

temperature for the thick thermocline Fr5 22 (Frt5 1.89). Waves are visualized by surfaces of

constant temperature T 5 0.03 and 0.97.
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Validation of our LES model (Fr 5 13, thick ther-

mocline) against the data on weak fountains in a ho-

mogeneous fluid by Lin and Armfield (2000) and

experiments on turbulent jets in a stratified fluid by

Ezhova and Troitskaya (2012) is shown in Fig. 4.

Figure 4a shows the decay of the axial vertical velocity of

the jet in the thermocline versus that of the weak

fountain in a homogeneous fluid (Lin and Armfield

2000). Figure 4b shows several LES profiles of the ver-

tical velocity in the thermocline (each normalized by its

centerline value Uc, while R0 corresponds to the dis-

tance, where Uavg 5 0) and compares them to the ex-

perimental data by Ezhova and Troitskaya (2012). We

do not include DNS data for the fountains in this figure

since Lin and Armfield (2000) used an initial parabolic

vertical velocity, and the vertical velocity profiles tend to

keep the parabolic form in weak fountains; as shown in

the figure, the experimental and LES profiles are closer

to Gaussian. Thus, the LES model presented here cap-

tures the properties of the mean velocity fields of the

weak fountains.

For each simulation, we gather statistics (the mean

values and the rms of the fluctuations of all quantities)

and save time histories to analyze the jet oscillations and

the main features of the internal waves at specific loca-

tions in the flow. We collect statistics approximately 100

time units after the perturbations at the thermocline

have reached the lateral boundary of the computational

domain. This time changes from approximately 900 time

units for the thin thermocline and small Froude number

to about 2100 time units for the thick pycnocline and

large Froude number. The duration of the sampling

changes from 1200 time units to 4100 time units, with

intervals of 0.25 time units for the time histories. To

investigate the dynamics of the fountain at the thermo-

cline and the internal waves, we examine the oscillations

of the isotherm T 5 0.5. The jet oscillations are char-

acterized by the isotherms at the center of the jet and at

four points at distance r 5 1.5 from the jet axis, while

internal waves are studied by the isotherms corre-

sponding to two sets of points located farther away, at

r 5 20 and 25.

3. Results

We shall first examine the statistics of the flow and, in

the following section, consider the internal waves gen-

erated by the interaction between the jet and the

thermocline.

a. Jet impingement and entrainment

Figure 5 shows cross sections of the absolute value of

the mean velocity from our simulations. The first ob-

servation is that the higher the Froude number, the

higher the jets penetrate into the thermocline and

eventually into the upper layer of stratification. For the

lowest Fr and the strongest stratification (thin thermo-

cline), the mean flow is reminiscent of a jet impinging

on a wall. In the other cases, the flow has a more com-

plicated structure and a counterflow appears in the

thermocline and upper stratification layer to form a

fountain. This counterflow is more evident when in-

creasing the Froude number and decreasing the thick-

ness of the thermocline. The higher the jet penetrates,

the higher the counterflow velocity is and the deeper

the annular flow surrounding the jet propagates into the

lower layer. Mixing, in turn, makes the fluid in the

counterflow lighter than the lower layer of stratification,

FIG. 4. Comparison of present LES data with DNS and experiments. (a) Mean axial vertical velocity vs z against

theDNSdata for weak fountains byLin andArmfield (2000). (b)Mean vertical velocity profiles in the cross sections

along the jet axis in the thermocline (curves) against the experimental data on turbulent jets in a stratified fluid by

Ezhova and Troitskaya (2012) (symbols).
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so that it bounces back to the thermocline where it fi-

nally spreads at the level of neutral buoyancy. This

structure is characteristic of a two-layer stratification

(Cotel et al. 1997; Ansong et al. 2005) as compared to

fountains in homogeneous and linearly stratified media,

where the counterflow simply protrudes to the bed or

to the level of neutral buoyancy (Bloomfield and

Kerr 1998).

To quantify the jet penetration into the thermocline,

we report the mean axial jet velocity for all the stratified

cases and for the turbulent jet in homogeneous medium

in Fig. 6a. The evolution in the stratified media follows

that in a homogeneous medium to z ’ 18, before the

typical behavior of a fountain is observed.

Figure 6b reports the penetration heights from the

LES defined as the location where the jet velocity falls

below 1% of the initial velocity.

The Froude numbers calculated at the thermocline

entrance are characteristic of weak fountains, and the

rising height can be estimated from the conservation of

energy (Kaye and Hunt 2006) so that the source kinetic

energy of the flow is converted into potential energy.

This implies that

U2
m

2
;

ðhz*
18D0

ga
T
(T

s
2T

0
) dz*, (12)

whereUm is the centerline jet velocity at the level where

the fountain is formed (we take z*5 18D0), and hz* is the

penetration height. Normalizing Eq. (12) with D0, U0,

and DT, we finally obtain

(lu
m
)2
Fr2

2
5

ðhz
18

T 0
s dz , (13)

where um 5 0.22 at z 5 18, and l is a constant of order

one, which we find from the best fit of the LES data.

Figure 6b displays the theoretical dependence of the

penetration height obtained by integrating Eq. (13) with

l 5 0.8. The comparison with the LES results indicates

that the penetration height is well predicted at low

Froude numbers but overestimated at the largest Fr. To

explain this, we recall that the rising height of weak

fountains in a homogeneous fluid scales as Fr2, whereas

that of forced fountains (where the turbulent entrain-

ment is taken into account) scales with Fr. The largest

Froude numbers investigated here correspond to the

transition between the weak and forced regime, and

therefore Eq. (12) is appropriate, for the weak regime

overestimates the penetration height at these Froude

numbers.

Note that the theory based on the conservation

equations by Morton et al. (1956) is not expected to be

valid for weak fountains near the thermocline because

the basic assumptions of the model about self-similarity

and constant turbulent entrainment do not hold. Our

calculations show that this model significantly un-

derestimates the penetration heights from the LES.

FIG. 5. Magnitude of the mean flow velocity for Fr5 (a),(d) 7 (Frt5 0.6), (b),(e) 13 (1.11), and (c),(f) 22 (1.89) [(top) thin thermocline and

(bottom) thick thermocline]. Dashed curves correspond to the contour lines of temperature T 5 0.1 and 0.9.
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The dashed lines in Fig. 5 indicate the boundaries of

the thermocline (they correspond to 10% and 90% of

the temperature jump) obtained from the average

temperature field. It can be seen that for the thin ther-

mocline and small Froude number (Fig. 3a), the tem-

perature jump is deformed as an entire structure

reminiscent of a thick membrane, with variations of the

height of the upper and lower boundaries only in the

region of the jet impingement; a strong stratification

dampens turbulence and inhibits mixing. For the higher

Froude numbers (Figs. 5b,c) the thin thermocline is

significantly deformed, revealing a toroidal well-mixed

region adjacent to the jet. The size and depth of this

well-mixed region grow with the Froude number.

Two observations can be made here: First, this be-

havior is consistent with the experimental observations

for a turbulent jet impinging on a stratified interface

[see, for instance, Shy (1995) and Cotel et al. (1997)]

where the formation of a large toroidal vortex was ob-

served immediately after the jet impingement and re-

lated to the generation of baroclinic vorticity, which

tends to push back the interface to the unperturbed

state. Second, which might be more relevant to our

system, we report that the turbulent regime of weak

fountains (1&Frt & 1:9), forming at the thermocline, is

characterized by vertical oscillations of the jet. Here, the

fluid falls down quasi periodically from the top

(Troitskaya et al. 2008; Burridge and Hunt 2012;

Druzhinin and Troitskaya 2013); these oscillations are

not necessarily axisymmetric, although their average is.

The fluid falling from the top forms the vortical struc-

tures adjacent to the jet at the lower boundary of the

thermocline. These structures, together with the small-

size eddies on the jet shear layers crossing the thermo-

cline, are responsible for the turbulent mixing. These

large structures and the small eddies on the shear layer

are illustrated by the instantaneous fields of temperature

and vertical velocity shown in Fig. 7 for both stratifica-

tions and Fr 5 7 and 22 (i.e., Frt 5 0.6 and 1.9).

The effect of the fountain oscillatory dynamics on the

generation of internal waves in the thermocline will be

discussed in the next section.

To substantiate these observations, we study the

change of the level of neutral buoyancy with increasing

Froude number, that is, the level where the jet spreads

horizontally, forming a gravity current. This is illustrated

by the mean horizontal velocity profiles at the distance

r 5 20 from the jet center (Fig. 8a). The vertical co-

ordinate in this picture is h5 g(z2 zp), so that the origin

is moved to the thermocline center and h 5 61 corre-

spond to the thermocline boundaries. Note that the

width of the horizontal flow is determined by the radius

of the jet at the thermocline entrance, which is the same

for the two values of thermocline thickness used. In

other words, the different width of the flows in Fig. 8a

reflects the different ratio between the thermocline

FIG. 6. (a)Mean centerline velocities for the jet in a homogeneous fluid and for all the simulations in the stratified

media indicating mean jet penetration. (b) Theoretical prediction of the mean penetration height vs the Froude

number: g 5 2 (solid) and 0.5 (dashed). Symbolsj andu denote the mean heights obtained in the simulations for

g 5 2 and 0.5, respectively.
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width and the radius of the impinging jet. For small

Froude numbers, the level of neutral buoyancy is below

the lower thermocline boundary while it is moving

higher up into the thermocline for larger Froude num-

bers, indicating a better mixing with the fluid in the

thermocline and from the upper layer of stratification.

To quantifymixing, we calculate themean temperature

of the horizontal flow through the cylindrical surface of

radius r 5 20 surrounding the jet; this distance is chosen

so that the control volume is far enough from the mixing

region adjacent to the jet (see Fig. 5, 15, z, 25). Using

the mean volume and mass fluxes of the gravity current,

we obtain the following expression for the averaged

temperature of the gravity current:

T
gr
5

ð
TU

hor
dzð

U
hor

dz

, (14)

where we perform the integration over the region

characterized only by positive values of Uhor; that is, we

consider the flow propagating outwards from the jet

(detrainment) and do not account for entrainment. The

FIG. 7. The (left) instantaneous temperature and (right) vertical velocity fields in the thermocline for both

stratifications.
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values obtained are displayed in Fig. 8b to demonstrate

that the average temperature of the horizontal flow in-

creases with the Froude number, again indicating a

better mixing with the fluid in the thermocline and the

upper layer of stratification.

To study themixing at the thin and thick thermoclines,

we introduce the entrainment fluxEi5Qe/Qin, similarly

to the definition used for investigations of turbulent

entrainment by jets and plumes in two-layer (sharp in-

terface) stratified fluid (Shy 1995; Cotel et al. 1997;

Shrinivas andHunt 2014, 2015).When the jet penetrates

into the upper layer of stratification, it forms a domelike

structure, which entrains the ambient fluid. Thus, Qe in

the definition above is the volume flux of the fluid en-

trained by the jet top and Qin is the volume flux of the

fluid in the jet at the interface between the two layers of

stratification. This domelike structure is reported in

Fig. 9, where we show the mean horizontal velocity

where the jets interact with the thermocline for both

stratifications under consideration. Since we have a

smooth change of temperature between the two layers,

the ‘‘dome’’ over which the fluxes are computed is de-

picted by the black lines in Fig. 9; we consider a closed

surface consisting of a circular cylinder cut on the lower

side along the surface of the fountain. As the total vol-

ume flux is equal to 0, we can estimate the flux through

the dome perimeter Qe as the sum of the fluxes through

the cylinder top and side Qcyl:

Q
cyl

5 2pR

ðz2
z1

u
side

dz1 2p

ðR
0

u
top

r dr , (15)

where uside and utop are the velocities normal to the side

and top surfaces of the cylinder, respectively; z1 and z2
are the vertical coordinates corresponding to the bottom

and top of the cylinder; and R is the radius of the base of

the cylinder.

We define the inflow volume flux Qin as the volume

flux of the jet at the level z5 18, where it is the same for

all the cases considered here (see Fig. 6a):

Q
in
5 2p

ð‘
0

u
in
r dr , (16)

with uin as the vertical velocity. The entrainment flux can

finally be written as

FIG. 8. (a) Velocity profiles of the gravity currents propagating at the level of neutral buoyancy at a distance r5 20 from the jet axis (gray

curves indicate thin thermocline and black curves indicate thick thermocline). (b)Average temperature of the gravity current as a function

of the thermocline Froude number. (c) Entrainment flux obtained from Eq. (17) as a function of the thermocline Froude number.

FIG. 9. Mean horizontal velocity fields in the jet impinging on the thermocline for Fr 5 16 (Frt 5 1.37): (a) thin

thermocline and (b) thick thermocline.
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ðz2
z1

u
side

dz1

ðR
0

u
top

r drð‘
0

u
in
r dr

. (17)

The dependence of the entrainment flux on the Froude

number at the thermocline entrance is displayed in

Fig. 8c, where the dashed curve indicates the theoretical

entrainment flux for a jet in an unconfined medium in

the limit of small Froude numbers (Frt, 1.4) and a sharp

interface, Ei 5 0:24Fr2t , together with the approximation

of the theoretical curve for larger Froude numbers, both

taken from Shrinivas andHunt (2014). This power law is

obtained from an energy balance: a fraction of the ki-

netic energy supplied by the jet at the interface per time

unit is expended into work (per time unit) against the

gravity force to entrain fluid from the upper stratifica-

tion over a distance of the order of the jet scale at the

thermocline entrance, yielding Qe/Qi ; u2
t /RtDg;Fr2t

(here ut andRt are themean jet velocity and radius taken

at the level of the density interface). The value of the

constant A5 0.24 is obtained theoretically by Shrinivas

and Hunt (2014).

Our data follow the quadratic law obtained in

Shrinivas and Hunt (2014) for the thin thermocline;

however, the entrainment rate is slightly higher. Owing

to the smoother temperature change in the thermocline,

the turbulent transfer is expected to be more active in

this case than for the sharp interface.

At small Froude numbers, the fountain in the thick

thermocline entrains more fluid, although the average

temperature of the horizontal gravity current is lower.

This is because the jet does not penetrate through the

thermocline up to the warm upper layer. At the same

time the stratification is weaker, which results in a larger

surface of the dome and more efficient turbulent trans-

fer. At higher Froude numbers, when the jet penetrates

through the thermocline, the entrainment fluxes are

rather close for the two cases, but the average temper-

atures for the thick thermocline are lower.

We explain this difference through the presence of a

horizontal flow toward the jet in the upper part of the

thick thermocline. In fact, we recall that entrainment

velocities (denoted as secondary flows; Shrinivas and

Hunt 2015) play an important role in the process of

confined entrainment at small Froude numbers. As

shown in Fig. 9a, the flow above the dome in the thin

thermocline looks similar to the model of a thin ‘‘vortex

sheet’’ on the dome perimeter for unconfined entrain-

ment in a two-layer stratification (Shrinivas and Hunt

2014). Interestingly, a horizontal secondary flow appears

in the thick thermocline. Figure 9b shows a two-layer

horizontal flow in the thermocline. In this case, stratifica-

tion inhibits vertical turbulent transfer and the jet entrains

the fluid from the upper thermocline, forming a well-

pronounced horizontal secondary flow over the initial

gravity current. Even for the largest penetration heights of

the jet investigated here, the structure of the horizontal

flow essentially does not change and the jet entrains fluid

mostly from the thermocline, not from the upper stratifi-

cation layer as in the case of the thin thermocline.

Finally, note that the thick thermocline conditions cor-

respond to the experimental setup used in Troitskaya et al.

(2008) and Bondur et al. (2010) to investigate turbulent

jets and plumes in a thermocline-like stratified tank. The

horizontal velocity profiles measured in the experiments

at a distance 24Rt from the jet center display a backflow

from 6% to 15% of the maximal velocity of the gravity

current in the upper thermocline. Our simulations give a

magnitude of 15%–20% at a closer distance of 10Rt.

b. Generation of internal waves

In all the simulations, as in the experiments of

Troitskaya et al. (2008) and Ezhova et al. (2012), we

observe oscillations of the jet top at the thermocline,

which results in the generation of internal waves. An

example of the instantaneous temperature field at the

center of the thermocline and the corresponding iso-

therms at the distance r5 20 from the jet center is shown

in Fig. 10 for the case of the thin thermocline Fr5 10, 22

(Frt 5 0.86, 1.9). The top figure, pertaining to the lower

Froude number, displays rather regular waves emanat-

ing from the jet and almost sinusoidal isotherms. The

plots for the larger Froude number show a more cha-

otic behavior, the isotherms displaying signs of wave

breaking in the thermocline.

The analysis of the dynamics of the jet in the ther-

mocline and of the internal waves is based on the power

spectra of the temperature oscillations, S (f). We con-

sider the isotherm at the center of the undisturbed

thermocline T 5 0.5 and investigate its displacement at

several points close to the jet center and far from it. The

spectra of the jet oscillations, z 2 zp with zp as the av-

erage height of the thermocline T5 0.5, are obtained by

averaging data from five locations: one in the center of

the jet and four from the points on the circle of radius

1.5 (see section 2c). The spectra of internal waves, in-

stead, are obtained by averaging spectra from eight

locations at distance r 5 20 from the jet center. The

spectra for Fr 5 13 are shown as thin and thick ther-

moclines in Figs. 11b and 11c as an example. It can be

seen that the jet generates internal waves with pro-

nounced spectral peaks.

We first note that all the spectra of the jet oscillations

in both stratifications have two peaks. This is consistent
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with the observation of fountains in a homogeneous

fluid where two peaks have been reported for all cases

by Burridge and Hunt (2013). Moreover, for fixed Fr,

the spectra of the jet oscillations have peaks at similar

frequencies in different stratifications, as shown in

Fig. 11a. Thus, the frequencies of the oscillations do not

depend on the thermocline thickness for the parame-

ters chosen in the simulations. Note, however, that one

expects differences in frequencies when the jet does

not penetrate through the thermocline since its effec-

tive Froude number is defined by the temperature

difference between the lower stratification layer and

the level to which the jet penetrates, rather than by the

difference between upper and lower stratification. In

our case, this difference is probably too small to be

detected. Simulations at even lower Fr may possibly

reveal this effect.

The frequencies of the spectral peaks for jet oscilla-

tions and internal waves are summarized in Table 2 and

displayed in Fig. 12. Since the peaks in the spectra are

rather wide, we used the following expression to define

the main frequencies in the spectra:

FIG. 10. (left) Instantaneous temperature field in the horizontal plane at the center of the thermocline and (right)

time history of the isotherms at distance r5 20 from the jet center. (top) The data pertain to the simulation of the

thin thermocline with Fr 5 10 (Frt 5 0.86) (isotherms corresponding to temperatures from T 5 0.4 to 0.7) and

(bottom) the simulation with the Fr 5 22 (Frt 5 1.89) (isotherms from T 5 0.3 to 0.7).

FIG. 11. (a) The spectra of jet oscillations in the thin (solid) and thick thermocline (dashed) for Fr5 13 (Frt 5 1.11)). (b) The spectra of

jet oscillations (dashed) and internal waves (solid), thin thermocline. (c) The spectra of jet oscillations (dashed) and internal waves (solid),

thick thermocline.
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f̂ 5

ðfmax

fmin

fS ( f ) dfð
S ( f ) df

, (18)

where fmin and fmax denote the range of frequencies

corresponding to each spectral peak. The figure shows a

decrease in the frequency of the oscillations with the

Froude number in agreement with the fountains in a

homogeneous medium (Burridge and Hunt 2013).

For the three smallest Froude numbers, the spectra

of jet oscillations have a pronounced large peak and a

second small peak at approximately double the fre-

quency. For the two highest Froude numbers investi-

gated, the peaks have approximately equal magnitude.

The spectra of internal waves are different at lower

Froude numbers, with two peaks in the thin thermo-

cline and one peak in the thick thermocline, primarily

due to the difference in the maximal buoyancy fre-

quencies as explained below.

Indeed, the thickness of the two thermoclines con-

sidered in this paper corresponds to a factor of 2 dif-

ference in the maximal buoyancy frequency. The

dimensionless buoyancy frequency N2 5 gaT(dTs/dz)

can be rewritten in our case as

N2 5
0:5g

Fr2
1

cosh2[g(z2 z
p
)]
. (19)

Thus, Nmax 5 1/Fr and Nmax 5 0.5/Fr for g 5 2 and 0.5,

respectively. The spectra of jet oscillations and internal

waves for the same Fr 5 13 and different stratifications

are shown in Figs. 11b and 11c. The spectra of jet os-

cillations have two distinct peaks, the higher one possi-

bly corresponding to the harmonics of the lower. The

thin thermocline has a larger maximal buoyancy fre-

quency, which allows the propagation of waves of both

frequencies (first and second peak), while only the

lowest-frequency perturbation can generate internal

waves at the thick thermocline. Figure 12b clearly in-

dicates the frequency cutoff due to the smaller maxi-

mal buoyancy frequency, since the second frequency

in the spectra of the jet oscillations is always higher

than the maximum buoyancy frequency for the thick

thermocline.

For the two higher Froude numbers, the spectra of

internal waves have one pronounced peak close to the

lower peak of the jet oscillations, which is surprising in

case of the thin thermocline where one expects propa-

gating waves at both frequencies. The simulations for

these cases, when the jet penetrates far enough through

TABLE 2. Frequencies of jet oscillations and internal waves in the thin and thick thermoclines.

Fr (Frt) f̂ 1jet thin f̂ 2jet thin f̂ 1jet thick f̂ 2jet thick f̂ 1IW thin f̂ 2IW thin f̂ 1IW thick

7 (0.60) 0.0096 0.0179 0.0098 0.0177 0.0100 0.0173 0.0083

10 (0.86) 0.0072 0.0146 0.0068 0.0152 0.0078 0.0135 0.0063

13 (1.11) 0.0038 0.0082 0.0042 0.0084 0.0040 0.0073 0.0045

16 (1.37) 0.0024 0.0055 0.0026 0.0054 0.0037 — 0.0030

22 (1.89) 0.0017 0.0048 0.0021 0.0048 0.0023 — 0.0025

FIG. 12. The frequencies of the jet oscillations and internal waves as the functions of the Froude number: (a) thin

thermocline and (b) thick thermocline. The solid curves correspond to the maximal buoyancy frequency.
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the thermocline, show that fluid falling from the jet top

loses axial symmetry, in contrast to the cases at smaller

Froude numbers, and the jet undergoes ‘‘tilting’’ from

one side to the other. This may explain why internal

waves propagate only at the low frequency. Moreover,

the fluid falling from the fountain goes deep to the

lower layer of stratification and then bounces back,

creating additional disturbances in the thermocline,

which might result in a frequency shift. This is more

relevant for the thin thermocline where we see a more

pronounced shift of the frequency of the internal waves

from the lower peak in the spectra of the jet oscillations

(Fig. 12a).

In case of the thin thermocline, the frequency of the

higher peak in the spectra of the internal waves decreases

from 0.5Nmax to 0.3Nmax. For the thick thermocline, the

peak in the spectrum of the internal waves corresponds to

the lower peak in the jet oscillations spectrum and is close

to 0.7Nmax for all the simulations. The latter is consistent

with the results of the experiment by Ezhova et al. (2012),

where the oscillations of a turbulent jet in a stratified fluid

and the corresponding internal waves have been in-

vestigated. As mentioned before, the jet diameter at the

thermocline entrance was of order of the thermocline

thickness in these experiments corresponding to our

simulations with the thick thermocline Frt ; 1. In the

experiments, the jet oscillations are characterized by

pronounced peaks close to 0.7Nmax and at the frequency

close to the maximum buoyancy frequency. Internal

waves have been revealed at the frequencies 0.7Nmax in

agreement with our simulations.

The root-mean-square s of the isotherms both for

jet oscillations and internal waves, that is, close and

far from the jet axis, is obtained from the power

spectra S ( f ),

s5

� ð
S ( f ) df

�1/2
, (20)

and is used to characterize the amplitudes of the oscil-

lations. The amplitudes of the jet oscillations and in-

ternal waves are displayed in Fig. 13a versus the Froude

number for both stratifications. Interestingly, the am-

plitudes of the jet oscillations and of the internal waves

are close to each other in both cases, although the work

against the gravity force to obtain the same amplitude is

larger in the thin thermocline as the density gradient is

higher. This suggests that the waves are transmitted

more effectively in the case of the thin thermocline,

probably because for the thick thermocline the wave

frequency is close to the maximal buoyancy frequency.

The amplitude of the jet oscillations follows the sta-

tionary solution to the Landau equation

ds

dt
5s[m(Fr

t
2Fr

t0
)2bs2] , (21)

describing the soft excitation of self-sustained oscilla-

tions (m and b are free parameters here), with Frt05 0.4,

m/b5 0.42 based on the best fit of the experimental data.

This is consistent with the experimental and numerical

results obtained for a jet interacting with a pycnocline

(Troitskaya et al. 2008; Druzhinin and Troitskaya 2013).

The investigation of the stability of the experimentally

measured velocity profiles of the fountain in the pyc-

nocline by Troitskaya et al. (2008) and Ezhova and

Troitskaya (2012) reveals a finite region of absolute

FIG. 13. (a) The amplitudes of the jet oscillations and the internal waves as function of the thermocline Froude

number. Solid line represents the stationary solution of Landau equation. (b) The group velocity of the firstmode of

internal waves as a function of frequency.
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instability along the jet, thus fulfilling a necessary con-

dition for self-sustained oscillations of the flow. It has

been demonstrated that the frequency of self-sustained

oscillations is in agreement with the results of the linear

stability analysis of the flow in the thermocline. The

present simulations for the thick thermocline follow the

experimental setup of Ezhova and Troitskaya (2012),

and the LES results are consistent with the experiment.

Hence, we can conclude that the generation of internal

waves results from the self-sustained excitation of the jet

oscillations in the thermocline.

We investigate the vertical structure of the internal waves

andquantify their energetics. The energyfluxof the internal

waves in the presence of an inhomogeneous horizontal

flow, as we have in this case because of the horizontal

gravity flow, is calculated following Kamenkovich and

Monin (1978). The equations ofmotion linearized around a

horizontal mean flow in cylindrical coordinates are

Du0
r

Dt
1 u0

z

dU
hor

dz
1

1

r
0

›p0

›r
5 0, (22)

Du0
f

Dt
1

1

r
0

1

r

›p0

›f
5 0, (23)

Du0
z

Dt
1 g

r0

r
0

1
1

r
0

›p0

›z
5 0, (24)

g
D(r0/r

0
)

Dt
2N2(z)u0

z 5 0, and (25)

= � u0 5 0, (26)

where D/Dt5 ›/›t1Uhor›/›r. Uhor 5Uhorr is the mean

flowandu0 denotes the small perturbationsof themeanflow.

The equation for energy conservation can be obtained

by multiplying Eq. (22) with u0
r, Eq. (23) by u0

f, and

Eq. (24) by u0
z and summing. From Eq. (25), taking

into account that u0
z 5Dj/Dt, we find that gr0 5 r0N

2(z)j

(where j is the vertical displacement of a fluid particle).

Finally, the equation of the wave energy conservation

reads

›E

›t
1=F52I , (27)

where the wave energy E, the energy flux F, and the

production/dissipation term I are

E5
1

2
r
0
(u02 1N2j2) , (28)

F5U
hor

E1 u0p0, and (29)

I5 r
0
u0
ru

0
z

dU
hor

dz
. (30)

The quantity I describes the interaction of the mean

flow with the wave. From Eq. (27) it follows that the

integral wave energy flux is not conserved due to this

term. In the present configuration, waves can grow or

decay in space where ›E/›t is zero at statistically

steady state.

The surface-integrated value of the wave energy flux

at the distance r from the jet axis is normalized with the

energy flux of the jet at the thermocline entrance:

F

F
jet

5

R

ðz2
z1

�
1

2
(u02 1N2j2)U

hor
1

p0u0
r

r
0

�
dz

1

2

ð‘
0

U3
t r dr

. (31)

We measure the profiles of the energy flux at four

radial points and averaged them to get the final profile.

The inflow energy flux is taken at the level z 5 18. The

profiles F/Fjet, pertaining to the thick and thin thermo-

cline at the distances r5 20 and 25, are shown in Fig. 14.

It can be seen that the energy does not only decay with

the distance from the jet center, but the profiles are also

deformed, especially in the areas affected by the shear

due to the horizontal flow, presumably due to the en-

hanced decay resulting from the interaction with the

mean flow.

The surface-integrated wave energy flux normalized

with the jet energy flux is displayed in Fig. 15 versus the

Froude number. The difference between the values at

r 5 20 and 25 illustrates the difference in the decay of

the energy of the internal waves due to the interaction

with the mean flow. Note that the wave energy flux is

around 4%–5% of the energy of the jet for the thin

thermocline and is almost half for the thick thermo-

cline. This can be partly explained by the fact that the

counterflow in the upper thermocline transfers energy

in the opposite direction, that is, toward the jet. The

whole flux, however, is always positive. Note also the

jump in the energy flux for the largest Froude number

when the horizontal flow occupies more space in the

thermocline, preventing the transfer of energy toward

the jet.

We finally comment on the difference in the velocities

of wave propagation. As explained above, transients in

the simulations are very different when changing the

thickness of the thermocline, and the difference in the

domain size (40 from the jet center to the lateral

boundary along the axes for the thin thermocline and 47

for the thick thermocline) is too small to explain this.

The fact that the internal waves are significantly slower

in the thick thermocline can be related to the dispersion

properties of the internal waves. The dispersion relation

for the wavesC; c(z)e2ivt1ikr in a stratified medium is

obtained from the solution of the eigenvalues of the

Taylor–Goldstein equation:
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FIG. 14. Vertical profiles of the energy flux of internal waves: (top) thin thermocline and (bottom) thick

thermocline. (left) r 5 20 and (right) r 5 25.
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hor
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2

(U
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)00
zz

U
hor
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2 k2

#
c5 0,

c(H
d
)5c(H

u
)5 0, (32)

where c is a streamfunction, N is the buoyancy fre-

quency, Uhor is the mean horizontal velocity that de-

pends on the vertical coordinate z, c 5 v/k is the wave

phase velocity (v is the wave frequency and k is the

wavenumber), and z 5 Hu, Hd denote the locations of

the upper and lower boundaries [Eq. (32) is made non-

dimensional with U0 and D0]. This eigenvalue problem

is solved numerically for the stratification profiles and

the horizontal velocities extracted from the simulations.

The group velocity cgr 5 dv/dk of the first (fundamen-

tal) mode of the internal waves is displayed in Fig. 13b for

the Froude numbers Fr 5 0 (no flow) and Fr 5 13 (with

horizontal flow) and both stratifications. Similar conclu-

sions apply to highermodes. Note the significant change in

the group velocities in the presence of the horizontal flow

due to the jet intrusion at the level of neutral buoyancy. In

particular, we find waves with frequencies higher than the

maximal buoyancy frequency that propagate with group

velocities approaching the maximal velocity of the hori-

zontal gravity flow. The largest fluctuations associatedwith

these modes are localized in the flow as compared to the

lower-frequency modes localized in the thermocline. For

the internal waves at Fr5 13 (see the frequencies in Table

2) we estimate the group velocities of the fundamental

modes to be cgr5 0.04 for the thick thermocline and cgr 5
0.08 for the thin thermocline, which explains the difference

in time needed to reach a statistically steady state: td,thin 5
1000 time units and td,thick 5 1800 time units.

4. Conclusions

We have presented the results of numerical simula-

tions of a turbulent jet interacting with a thermocline in

an unconfined stratified medium. Two stratifications

have been modeled: a thin and a thick thermocline, with

thickness smaller and of the order of the jet diameter at

the thermocline entrance. The simulations have been

performed for five Froude numbers in each stratifica-

tion, ranging between 0.6 and 1.9, values typical of en-

gineering and geophysical flows (such as submerged

buoyant jets from wastewater outfalls).

We show that the jet mean penetration height can be

well predicted from the conservation of the source en-

ergy of a turbulent jet in a thermocline (Kaye and Hunt

2006), valid for weak fountains.

The entrainment flux in the thin thermocline, related to

the turbulent mixing of the jet with the surrounding me-

dium, is consistent with the theoretical model developed

for the case of a jet impinging at a sharp interface.At small

Froude numbers, the entrainment is more effective in the

thick thermocline, but already at Frt ’ 1 the fluxes be-

come equal for both stratifications. There is an important

difference, however, in the average secondary flows for

the two stratifications. For the thin thermocline the en-

trainment velocity is approximately the same around the

dome formed by the jet penetrating through the thermo-

cline. The entrainment in the thick thermocline, instead, is

mostly from the sides of the dome due to a pronounced

horizontal flow in the upper thermocline, with only a small

part of fluid coming from the upper stratification layer.

This difference is observed over the whole range of

Froude numbers investigated here, even in the case when

the jet penetrates through the thick thermocline.

The fountain formed by the jet penetrating into the

thermocline oscillates generating internal waves. The

amplitudes of the jet oscillations grow with the Froude

number as Fr1/2t corresponding to the regime of soft self-

excitation of the flow.We find two peaks in all the spectra:

for the smaller Froude numbers (up to Frt’ 1), the peak at

the higher frequency is rather weak as compared to the

second one, while at the larger Froude numbers, they are

comparable. The frequencies of the jet oscillations at fixed

Frt are basically the same for both stratifications. These

oscillations generate internal waves. The frequencies of

the internal waves depend also on the dispersion proper-

ties of the stratified medium, and oscillations at frequency

exceeding maximal buoyancy frequency are not found in

FIG. 15. The surface-integrated wave energy flux normalized

with the jet energy flux at the entrance to the thermocline. The

values at the largest Froude number for the distance r 5 20

coincide.
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the spectra of internal waves. Therefore, at the lower

Froude numbers both peaks are present in the spectra of

internal waves in case of the thin thermocline while only

one peak is present in the thick thermocline.

At the higher Froude numbers there is one pro-

nounced peak in the spectra of internal waves corre-

sponding approximately to the lower peak in the spectra

of jet oscillations. This is consistent with the results of

the laboratory experiments of Troitskaya et al. (2008)

and Ezhova et al. (2012), corresponding to our simula-

tions with the thick thermocline at Frt ’ 1.

The energy flux of internal waves at the thermocline

entrance is estimated to be around 4%–5% of the jet en-

ergy for the thin thermocline at the distance r 5 20 from

the jet center and almost half for the thick thermocline,

except for the largest Froude number Frt5 1.89, when the

fluxes are equal. The energy profiles and estimates of the

energy flux at the distance r5 25 show that internal waves

are significantly influenced by the horizontal gravity flow.

We finally make some remarks regarding a possible

application of the present numerical results to the

wastewater outfall system. As in the scale laboratory

modeling of the real system (Troitskaya et al. 2008), we

have observed the jet oscillations resulting in the gen-

eration of internal waves at a frequency close to 0.7Nmax

for the thick thermocline cases. These waves can be

rather strong with an average amplitude up to 20% of

the thermocline thickness (40% peak to peak) at the

distance of 10 jet radii at the thermocline from the

source. The seasonal change of the pycnocline, as we

briefly discussed in the introduction, is characterized

primarily by its sharpening and its transition closer to the

surface. Therefore, at the entrance to the pycnocline, the

diameter of the jet increases and the vertical velocity

decreases, that is, increasing gt and decreasing the Froude

number at the pycnocline entrance. Hence, we expect

that in summer, because of the lower Frt and amplitude,

the internal waves, albeit closer to the free surface, gen-

erate less mixing, and the entrainment at the top of the jet

is less effective than in winter. The waste water effluent

will be located closer to the free surface, and its dilution

will be reduced in summer, presenting a larger threat than

in winter when a more effective entrainment and larger-

amplitude internal waves will contribute to the dilution of

the effluent trapped farther away from the free surface.

Better dilution is expected either due to the possiblewave

breaking or due to the effect of enhancement of turbu-

lence in the field of a nonbreaking internal wave

(Matusov et al. 1989; Druzhinin and Ostrovsky 2015).

This study focuses on turbulent jets generated from a

momentum source of fluid of the same density as the

surrounding ambient fluid. The investigation of the ap-

plicability of the results discussed in this paper to a

turbulent plume with a finite buoyancy flux is underway.

However, if the results presented hold for a plumewith a

finite buoyancy flux, we expect that the different strati-

fication observed in summer and winter in tidewater

glaciers in Greenland (Straneo et al. 2011) will dra-

matically influence the formation and propagation of

internal waves in this setting. In particular, in winter, the

interface between the top and bottom layers in some of

Greenland’s fjords is sharp and thinner than in summer

(Straneo et al. 2011), and the buoyant plumes forming at

the glacier face due to submarine melting are weaker

due to a low (or absent) subglacial discharge. Hence, we

expect the lower Frt and thinner interface observed in

FIG. A1. The mesh and instantaneous temperature fields for Fr 5 13 (Frt 5 1.11), thin thermocline, in (a) the regular simulations and

(b) in the validation case. (c) Average centerline velocities for the test case and in regular simulations. Average velocity magnitude (d) in

the regular simulations and (e) in the test case. Dashed curves denote the contour lines of average temperature T 5 0.1 and 0.9.
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winter to generate low-amplitude internal waves with

two spectral peaks and the entrainment at the top of the

plume to be less effective than in summer when the

Froude number is larger. Additionally in summer, given

the larger Frt and thicker interface, the buoyant plumes

interacting with the interface are expected to generate

large-amplitude internal waves, which can possibly

break and contribute to the dilution of the meltwater

plume intruding horizontally at the interface.
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APPENDIX

Convergency Test and Additional Validations

We investigate the sensitivity of the simulations to the

size of spectral elements. For this aim we perform an

additional simulation for Fr5 13, thin pycnocline, with an

increased resolution. We left the size of the well-resolved

initial region at the inflow (43 43 10 spectral elements)

unaffected in order to keep the same velocity perturba-

tions and obtain the turbulent jet with the same charac-

teristics. However, we reduce the stretching factor to have

2 times smaller elements at jxj5 jyj5 10 and reduced the

stretching factor along the z axis to have 2 times more

elements in the thermocline. The meshes for both cases

are shown in Figs. A1a andA1b, displaying as an example

the instantaneous temperature fields for both simulations.

Figures A1d and A1e show the average velocity fields

together with the thermocline boundaries for both cases,

indicating good correspondence. The jet centerline ve-

locity as the function of the vertical coordinate illus-

trating mean jet penetration is shown in Fig. A1c. The

entrainment flux for the test case is Ei,test 5 0.36, as

compared to the regular grid with Ei 5 0.37. Thus, we

may conclude that the simulations converge, and the

calculations are resolved enough to get reliable results.

One can investigate the influence of reflections from

the boundaries comparing the internal waves measured

at the distances r 5 20 and r 5 25. We expect to get the

weaker signal at r5 25 and delay with respect to r5 20.

The examples of the isotherms for the largest Froude

numbers, as the most critical case for reflections, are

shown in Fig. A2 for both stratifications. Figure A2

displays also the averaged spectra of internal waves

measured at r 5 20 and 25 (averaging performed over

FIG. A2. The examples of the (left) isotherms T5 0.5 and (right) average spectra at r5 20 and 25 for the (top) thin

thermocline and the (bottom) thick thermocline.

NOVEMBER 2016 EZHOVA ET AL . 3435



eight realizations as explained in section 2b). It can be

seen that the signals at r5 25 follow the signals at r5 20.

The average spectra of the isotherms are similar, but the

peak for r 5 25 is lower, thus confirming the absence of

reflections from the boundaries at r 5 20 where we

measure internal waves.
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