9 research outputs found

    The dynamin-related protein Vps1 and the peroxisomal membrane protein Pex27 function together during peroxisome fission

    Get PDF
    Dynamin-related proteins (Drps) mediate a variety of membrane remodelling processes. The Saccharomyces cerevisiae Drp, Vps1, is required for endocytosis, endosomal sorting, vacuole fusion, and peroxisome fission and breakdown. How Drps, and in particular Vps1, can function at so many different subcellular locations is of interest to our understanding of cellular organisation. We found that the peroxisomal membrane protein Pex27 is specifically required for Vps1-dependent peroxisome fission in proliferating cells but is not required for Dnm1-dependent peroxisome fission. Pex27 accumulates in constricted regions of peroxisomes and affects peroxisome geometry upon overexpression. Moreover, Pex27 physically interacts with Vps1 in vivo and is required for the accumulation of a GTPase-defective Vps1 mutant (K42A) on peroxisomes. During nitrogen starvation, a condition that halts cell division and induces peroxisome breakdown, Vps1 associates with the pexophagophore. Pex27 is neither required for Vps1 recruitment to the pexophagophore nor for pexophagy. Our study identifies Pex27 as a Vps1-specific partner for the maintenance of peroxisome number in proliferating yeast cells

    Insights into the regulation of the mitochondrial inheritance and trafficking adaptor protein Mmr1 in saccharomyces cerevisiae

    Get PDF
    Mitochondria are organelles involved in cellular energetics in all eukaryotes, and changes in their dynamics, fission, fusion, or localization can lead to cell defects and disease in humans. Budding yeast, Saccharomyces cerevisiae, has been shown to be an effective model organism in elucidating mechanisms underpinning these mitochondrial processes. In the work presented here, a genetic screen was performed to identify overexpressing kinases, phosphatases, and ubiquitin ligases, which resulted in mitochondrial defects. A total of 33 overexpressed genes showed mitochondrial phenotypes but without severe growth defects. These included a subset that affected the timing of mitochondrial inheritance and were the focus of further study. Using cell and biochemical approaches, the roles of the PAK-family kinase Cla4 and the E3-ubiquitin ligases Dma1 and Dma2 were investigated. Previous studies have indicated the roles of kinase Cla4 and ligases Dma1 and Dma2 in triggering the degradation of trafficking adaptors in the bud, which leads to disruption of the interaction with the transporting class V myosin, Myo2. Here, we map a key interface between Cla4 and the mitochondrial adaptor Mmr1 necessary for phosphorylation and identify a region of Mmr1 required for its degradation via Dma1 and Dma2. Together, our data provide insights into key regulatory regions of Mmr1 responsible for its function in mitochondrial inheritance

    Spindle position checkpoint kinase Kin4 regulates organelle transport in Saccharomyces cerevisiae

    Get PDF
    Membrane-bound organelles play important, frequently essential, roles in cellular metabolism in eukaryotes. Hence, cells have evolved molecular mechanisms to closely monitor organelle dynamics and maintenance. The actin cytoskeleton plays a vital role in organelle transport and positioning across all eukaryotes. Studies in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) revealed that a block in actomyosin-dependent transport affects organelle inheritance to daughter cells. Indeed, class V Myosins, Myo2, and Myo4, and many of their organelle receptors, have been identified as key factors in organelle inheritance. However, the spatiotemporal regulation of yeast organelle transport remains poorly understood. Using peroxisome inheritance as a proxy to study actomyosin-based organelle transport, we performed an automated genome-wide genetic screen in S. cerevisiae. We report that the spindle position checkpoint (SPOC) kinase Kin4 and, to a lesser extent, its paralog Frk1, regulates peroxisome transport, independent of their role in the SPOC. We show that Kin4 requires its kinase activity to function and that both Kin4 and Frk1 protect Inp2, the peroxisomal Myo2 receptor, from degradation in mother cells. In addition, vacuole inheritance is also affected in kin4/frk1-deficient cells, suggesting a common regulatory mechanism for actin-based transport for these two organelles in yeast. More broadly our findings have implications for understanding actomyosin-based transport in cells

    Synthesis of Single Phase Hg-1223 High Tc Superconducting Films With Multistep Electrolytic Process

    Full text link
    We report the multistep electrolytic process for the synthesis of high Tc single phase HgBa2Ca2Cu3O8+ (Hg-1223) superconducting films. The process includes : i) deposition of BaCaCu precursor alloy, ii) oxidation of BaCaCu films, iii) electrolytic intercalation of Hg in precursor BaCaCuO films and iv) electrochemical oxidation and annealing of Hg-intercalated BaCaCuO films to convert into Hg1Ba2Ca2Cu3O8+ (Hg-1223). Films were characterized by thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrolytic intercalation of Hg in BaCaCuO precursor is proved to be a novel alternative to high temperature-high pressure mercuration process. The films are single phase Hg-1223 with Tc = 121.5 K and Jc = 4.3 x 104 A/cm2.Comment: 17 Pages, 10 Figures. Submitted to Superconductor Science and Technolog

    A contextual policy analysis of a cash programme in a humanitarian setting: the case of the Emergency Social Safety Net in Turkey

    No full text
    The Emergency Social Safety Net (ESSN) programme, which was launched in 2016, has become the central element of the humanitarian response to the plight of Syrian refugees in Turkey and an instrument of European migration control policies. This paper offers a contextual analysis of this European Union-funded cash assistance scheme by examining the modes of interaction between its major assumptions and the broader humanitarian response in the context of Turkey. It finds that the ESSN comes with compromises on humanitarian principles and standards, amplifies the protection and assistance divide, and fails to address the realities of Turkey with respect to the country's housing and labour markets and weak protection framework. The paper concludes that a more inclusive approach to eligibility and higher transfer payments can contribute to the addressing of assistance needs provided that cash support is combined with robust protection programming and the implementation of sector-specific projects and policies

    Solutions for construction of a lunar base: A proposal to use the spacex starship as a permanent habitat

    No full text
    International audienceReturning to the Moon and establishing a permanent human presence is the next step in human space exploration. This necessitates the development of lunar infrastructure up to this task. This contribution presents a framework for rapid, cost-efficient, and supporting construction of a permanent and modular lunar base within the scope of what will be technically and legally feasible today. The proposed concept uses the SpaceX Starship Human Landing System as the foundation for a lunar base. The Starship will be placed horizontally on the lunar surface and transformed into a habitable volume. A workforce of modular rovers will aid astronauts in the construction process, and an array of countermeasures are presented to protect the astronauts from the effects of exposure to radiation, lunar dust, and extended hypogravity. Psychological and psychosocial factors are included to enhance individual well-being and crew dynamics. Physical and cognitive workloads are defined and evaluated to identify effective countermeasures, including specific spacesuit requirements. The proposed construction activities are to be organized as a multi-national public-private partnership to establish an international authority, a concept that has been successful on Earth but has yet to be applied to space activities on a multi-national level. A roadmap incorporating each part of the construction from human and technical perspectives is outlined. Other aspects that are critical to mission success include the cultural significance of the project, legal aspects, budget, financing, and potential future uses of the base. These solutions rely mainly on existing technologies and limited modifications to the lunar lander vehicle, making it a viable solution for the construction of a lunar base in the near future
    corecore