12,783 research outputs found
Atomic level micromagnetic model of recording media switching at elevated temperatures
An atomic level micromagnetic model of granular recording media is developed
and applied to examine external field-induced grain switching at elevated
temperatures which captures non-uniform reversal modes. The results are
compared with traditional methods which employ the Landau-Lifshitz-Gilbert
equations based on uniformly magnetized grains with assigned intrinsic
temperature profiles for and . Using nominal parameters
corresponding to high-anisotropy FePt-type media envisioned for Energy Assisted
Magnetic Recording, our results demonstrate that atomic-level reversal slightly
reduces the field required to switch grains at elevated temperatures, but
results in larger fluctuations, when compared to a uniformly magnetized grain
model.Comment: 4 pages, 5 figure
Resistivity due to low-symmetrical defects in metals
The impurity resistivity, also known as the residual resistivity, is
calculated ab initio using multiple-scattering theory. The mean-free path is
calculated by solving the Boltzmann equation iteratively. The resistivity due
to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for
the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f
noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev.
B, vol. 57 (1998), accepted for publicatio
Iterative maximum-likelihood reconstruction in quantum homodyne tomography
I propose an iterative expectation maximization algorithm for reconstructing
a quantum optical ensemble from a set of balanced homodyne measurements
performed on an optical state. The algorithm applies directly to the acquired
data, bypassing the intermediate step of calculating marginal distributions.
The advantages of the new method are made manifest by comparing it with the
traditional inverse Radon transformation technique
Entanglement generation in continuously coupled parametric generators
We investigate a compact source of entanglement. This device is composed of a
pair of linearly coupled nonlinear waveguides operating by means of degenerate
parametric downconversion. For the vacuum state at the input the generalized
squeeze variance and logarithmic negativity are used to quantify the amount of
nonclassicality and entanglement of output beams. Squeezing and entanglement
generation for various dynamical regimes of the device are discussed.Comment: 6 pages, 7 figure
Insights into pneumococcal pneumonia using lung aspirates and nasopharyngeal swabs collected from pneumonia patients in The Gambia.
We investigated the pathogenesis of pneumococcal pneumonia using clinical specimens collected for pneumonia surveillance in The Gambia. Lung aspirates and nasopharyngeal swabs from 31 patients were examined by culture, qPCR, whole genome sequencing, serotyping, and reverse transcription qPCR. Five lung aspirates cultured pneumococci, with a matching strain identified in the nasopharynx. Three virulence genes including ply (pneumolysin) were upregulated >20-fold in the lung compared with the nasopharynx. Nasopharyngeal pneumococcal density was higher in pediatric pneumonia patients compared with controls (p <0.0001). Findings suggest that changes in pneumococcal gene expression occurring in the lung environment may be important in pathogenesis
Blazhko modulation in the infrared
We present first direct evidence of modulation in the K band of Blazhko-type RR Lyrae stars that are identified by their secular modulations in the I-band data of Optical Gravitational Lensing Experiment-IV. A method has been developed to decompose the K-band light variation into two parts originating from the temperature and the radius changes using synthetic data of atmosphere-model grids. The amplitudes of the temperature and the radius variations derived from the method for non-Blazhko RRab stars are in very good agreement with the results of the Baade-Wesselink analysis of RRab stars in the M3 globular cluster confirming the applicability and correctness of the method. It has been found that the Blazhko modulation is primarily driven by the change in the temperature variation. The radius variation plays a marginal part, moreover it has an opposite sign as if the Blazhko effect was caused by the radii variations. This result reinforces the previous finding based on the Baade-Wesselink analysis of M3 (NGC 5272) RR Lyrae, that significant modulation of the radius variations can only be detected in radial-velocity measurements, which relies on spectral lines that form in the uppermost atmospheric layers. Our result gives the first insight into the energetics and dynamics of the Blazhko phenomenon, hence it puts strong constraints on its possible physical explanations
Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements
Coupling losses were studied in composite tapes containing superconducting
material in the form of two separate stacks of densely packed filaments
embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry
is quite favorable for studying the coupling currents and in particular the
role of superconducting bridges between filaments. By using a.c. susceptibility
technique, the electromagnetic losses as function of a.c. magnetic field
amplitude and frequency were measured at the temperature T = 77 K for two tapes
with different matrix composition. The length of samples was varied by
subsequent cutting in order to investigate its influence on the dynamics of
magnetic flux penetration. The geometrical factor which takes into
account the demagnetizing effects was established from a.c. susceptibility data
at low amplitudes. Losses vs frequency dependencies have been found to agree
nicely with the theoretical model developed for round multifilamentary wires.
Applying this model, the effective resistivity of the matrix was determined for
each tape, by using only measured quantities. For the tape with pure silver
matrix its value was found to be larger than what predicted by the theory for
given metal resistivity and filamentary architecture. On the contrary, in the
sample with a Ag/Mg alloy matrix, an effective resistivity much lower than
expected was determined. We explain these discrepancies by taking into account
the properties of the electrical contact of the interface between the
superconducting filaments and the normal matrix. In the case of soft matrix of
pure Ag, this is of poor quality, while the properties of alloy matrix seem to
provoke an extensive creation of intergrowths which can be actually observed in
this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and
Technolog
Resolving photon number states in a superconducting circuit
Electromagnetic signals are always composed of photons, though in the circuit
domain those signals are carried as voltages and currents on wires, and the
discreteness of the photon's energy is usually not evident. However, by
coupling a superconducting qubit to signals on a microwave transmission line,
it is possible to construct an integrated circuit where the presence or absence
of even a single photon can have a dramatic effect. This system is called
circuit quantum electrodynamics (QED) because it is the circuit equivalent of
the atom-photon interaction in cavity QED. Previously, circuit QED devices were
shown to reach the resonant strong coupling regime, where a single qubit can
absorb and re-emit a single photon many times. Here, we report a circuit QED
experiment which achieves the strong dispersive limit, a new regime of cavity
QED in which a single photon has a large effect on the qubit or atom without
ever being absorbed. The hallmark of this strong dispersive regime is that the
qubit transition can be resolved into a separate spectral line for each photon
number state of the microwave field. The strength of each line is a measure of
the probability to find the corresponding photon number in the cavity. This
effect has been used to distinguish between coherent and thermal fields and
could be used to create a photon statistics analyzer. Since no photons are
absorbed by this process, one should be able to generate non-classical states
of light by measurement and perform qubit-photon conditional logic, the basis
of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at
http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd
- …