94 research outputs found

    The effects of intramuscular tenotomy on the lengthening characteristics of tibialis posterior: high versus low intramuscular tenotomy

    Get PDF
    BACKGROUND: Lengthening of soft-tissue contractures is frequently required in children with a wide variety of congenital and acquired deformities. However, little is known about the biomechanics of surgical procedures which are commonly used in contracture surgery, or if variations in technique may have a bearing on surgical outcomes. We investigated the hypothesis that the site of intramuscular tenotomy (IMT) within the muscle-tendon-unit (MTU) of the tibialis posterior (TP) would affect the lengthening characteristics. METHODS: We performed a randomized trial on paired cadaver tibialis posterior muscle-tendon-units (TP-MTUs). By random allocation, one of each pair of formalin-preserved TP-MTUs received a high IMT, and the other a low IMT. These were individually tensile-tested with an Instron(®) machine under controlled conditions. A graph of load (Newtons) versus displacement (millimetres) was generated for each pair of tests. The differences in lengthening and load at failure for each pair of TP-MTUs were noted and compared using paired t tests. RESULTS: We found 48% greater lengthening for low IMT compared to high IMT for a given load (P = 0.004, two tailed t test). Load at failure was also significantly lower for the low IMT. These findings confirm our hypothesis that the site of the tenotomy affects the amount of lengthening achieved. This may contribute to the reported variability in clinical outcome. CONCLUSIONS: Understanding the relationship between tenotomy site and lengthening may allow surgeons to vary the site of the tenotomy in order to achieve pre-determined surgical goals. It may be possible to control the surgical "dose" by altering the position of the intramuscular tenotomy within the muscle-tendon-unit

    Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories

    Full text link
    In this paper we study the kinetics of diffusion-limited, pseudo-first-order A + B -> B reactions in situations in which the particles' intrinsic reactivities vary randomly in time. That is, we suppose that the particles are bearing "gates" which interchange randomly and independently of each other between two states - an active state, when the reaction may take place, and a blocked state, when the reaction is completly inhibited. We consider four different models, such that the A particle can be either mobile or immobile, gated or ungated, as well as ungated or gated B particles can be fixed at random positions or move randomly. All models are formulated on a dd-dimensional regular lattice and we suppose that the mobile species perform independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile, ungated target A and a concentration of mobile, gated B particles is solved exactly. For the remaining three models we determine exactly, in form of rigorous lower and upper bounds, the large-N asymptotical behavior of the A particle survival probability. We also realize that for all four models studied here such a probalibity can be interpreted as the moment generating function of some functionals of random walk trajectories, such as, e.g., the number of self-intersections, the number of sites visited exactly a given number of times, "residence time" on a random array of lattice sites and etc. Our results thus apply to the asymptotical behavior of the corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR

    Intrinsic electron traps in atomic-layer deposited HfO2 insulators

    Get PDF
    Analysis of photodepopulation of electron traps in HfO2 films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around Et ≈ 2.0 eV and Et ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO2 layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behavior of HfO2, suggesting that alternative defect models should be considered

    Identification of a Cytotoxic Form of Dimeric Interleukin-2 in Murine Tissues

    Get PDF
    Interleukin-2 (IL-2) is a multi-faceted cytokine, known for promoting proliferation, survival, and cell death depending on the cell type and state. For example, IL-2 facilitates cell death only in activated T cells when antigen and IL-2 are abundant. The availability of IL-2 clearly impacts this process. Our laboratory recently demonstrated that IL-2 is retained in blood vessels by heparan sulfate, and that biologically active IL-2 is released from vessel tissue by heparanase. We now demonstrate that heparanase digestion also releases a dimeric form of IL-2 that is highly cytotoxic to cells expressing the IL-2 receptor. These cells include “traditional” IL-2 receptor-bearing cells such as lymphocytes, as well as those less well known for IL-2 receptor expression, such as epithelial and smooth muscle cells. The morphologic changes and rapid cell death induced by dimeric IL-2 imply that cell death is mediated by disruption of membrane permeability and subsequent necrosis. These findings suggest that IL-2 has a direct and unexpectedly broad influence on cellular homeostatic mechanisms in both immune and non-immune systems

    CVD-Enabled Graphene Manufacture and Technology.

    Get PDF
    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth.Funding from the ERC (Grant No. 279342, InSituNANO) and EPSRC (Grant No. EP/K016636/1, GRAPHTED) is acknowledged. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.jpclett.5b0105

    Exploring Cell Tropism as a Possible Contributor to Influenza Infection Severity

    Get PDF
    Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles, similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more severe influenza infections even when administered late

    Urban regeneration and sustainable housing renewal trends

    Get PDF
    Urban planning, affordable houses and protection of the cultural natural heritage are important elements to be considered in the design of sustainable urban realities. Homes for One Pound, Granby Four Streets CLT, Homebaked CLT, Make Liverpool CIC and Engage Liverpool CIC are examples of successful initiatives oriented to foster urban regeneration by promoting environmental quality and social cohesion
    corecore