8 research outputs found

    Modern venomics--Current insights, novel methods, and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.This work is funded by the European Cooperation in Science and Technology (COST, www.cost.eu) and based upon work from the COST Action CA19144 – European Venom Network (EUVEN, see https://euven-network.eu/). This review is an outcome of EUVEN Working Group 2 (“Best practices and innovative tools in venomics”) led by B.M.v.R. As coordinator of the group Animal Venomics until end 2021 at the Institute for Insectbiotechnology, JLU Giessen, B.M.v.R. acknowledges the Centre for Translational Biodiversity Genomics (LOEWE-TBG) in the programme “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse's Ministry of Higher Education, Research, and the Arts. B.M.v.R. and I.K. further acknowledge funding on venom research by the German Science Foundation to B.M.v.R. (DFG RE3454/6-1). A.C., A.V., and G.Z. were supported by the European Union's Horizon 2020 Research and Innovation program through Marie Sklodowska-Curie Individual Fellowships (grant agreements No. A.C.: 896849, A.V.: 841576, and G.Z.: 845674). M.P.I. is supported by the TALENTO Program by the Regional Madrid Government (2018-T1/BIO-11262). T.H.'s venom research is funded by the DFG projects 271522021 and 413120531. L.E. was supported by grant No. 7017-00288 from the Danish Council for Independent Research (Technology and Production Sciences). N.I. acknowledges funding on venom research by the Research Fund of Nevsehir Haci Bektas Veli University (project Nos. ABAP20F28, BAP18F26). M.I.K. and A.P. acknowledge support from GSRT National Research Infrastructure structural funding project INSPIRED (MIS 5002550). G.A. acknowledges support from the Slovenian Research Agency grants P1-0391, J4-8225, and J4-2547. G.G. acknowledges support from the Institute for Medical Research and Occupational Health, Zagreb, Croatia. E.A.B.U. is supported by a Norwegian Research Council FRIPRO-YRT Fellowship No. 287462

    Phylogenetic analyses suggest centipede venom arsenals were repeatedly stocked by horizontal gene transfer

    No full text
    Abstract: Venoms have evolved over a hundred times in animals. Venom toxins are thought to evolve mostly by recruitment of endogenous proteins with physiological functions. Here we report phylogenetic analyses of venom proteome-annotated venom gland transcriptome data, assisted by genomic analyses, to show that centipede venoms have recruited at least five gene families from bacterial and fungal donors, involving at least eight horizontal gene transfer events. These results establish centipedes as currently the only known animals with venoms used in predation and defence that contain multiple gene families derived from horizontal gene transfer. The results also provide the first evidence for the implication of horizontal gene transfer in the evolutionary origin of venom in an animal lineage. Three of the bacterial gene families encode virulence factors, suggesting that horizontal gene transfer can provide a fast track channel for the evolution of novelty by the exaptation of bacterial weapons into animal venoms.Copyright: © The Authors, 2021. This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system

    No full text
    Background: We present the first molecular characterization of glycerotoxin (GLTx), a potent neurotoxin found in the venom of the bloodworm Glycera tridactyla (Glyceridae, Annelida). Within the animal kingdom, GLTx shows a unique mode of action as it can specifically up-regulate the activity of Cav2.2 channels (N-type) in a reversible manner. The lack of sequence information has so far hampered a detailed understanding of its mode of action. Results: Our analyses reveal three ~3.8 kb GLTx full-length transcripts, show that GLTx represents a multigene family, and suggest it functions as a dimer. An integrative approach using transcriptomics, quantitative real-time PCR, in situ hybridization, and immunocytochemistry shows that GLTx is highly expressed exclusively in four pharyngeal lobes, a previously unrecognized part of the venom apparatus. Conclusions: Our results overturn a century old textbook view on the glycerid venom system, suggesting that it is anatomically and functionally much more complex than previously thought. The herein presented GLTx sequence information constitutes an important step towards the establishment of GLTx as a versatile tool to understand the mechanism of synaptic function, as well as the mode of action of this novel neurotoxin.Copyright © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    A Centipede Toxin Family Defines an Ancient Class of CS alpha beta Defensins

    No full text
    Disulfide-rich peptides (DRPs) play diverse physiological roles and have emerged as attractive sources of pharmacological tools and drug leads. Here we describe the 3D structure of a centipede venom peptide, U-SLPTX15-Sm2a, whose family defines a unique class of one of the most widespread DRP folds known, the cystine-stabilized α/β fold (CSαβ). This class, which we have named the two-disulfide CSαβ fold (2ds-CSαβ), contains only two internal disulfide bonds as opposed to at least three in all other confirmed CSαβ peptides, and constitutes one of the major neurotoxic peptide families in centipede venoms. We show the 2ds-CSαβ is widely distributed outside centipedes and is likely an ancient fold predating the split between prokaryotes and eukaryotes. Our results provide insights into the ancient evolutionary history of a widespread DRP fold and highlight the usefulness of 3D structures as evolutionary tools.status: publishe

    Extreme venom variation in Middle Eastern vipers: A proteomics comparison of Eristicophis macmahonii, Pseudocerastes fieldi and Pseudocerastes persicus

    No full text
    Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development. Biological significance These results show extreme venom variation between these closely related snakes. These results have direct implications for the treatment of the envenomed patient

    PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold

    No full text
    Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.status: publishe
    corecore