1,071 research outputs found

    Laser microscopy of tunneling magnetoresistance in manganite grain-boundary junctions

    Full text link
    Using low-temperature scanning laser microscopy we directly image electric transport in a magnetoresistive element, a manganite thin film intersected by a grain boundary (GB). Imaging at variable temperature allows reconstruction and comparison of the local resistance vs temperature for both, the manganite film and the GB. Imaging at low temperature also shows that the GB switches between different resistive states due to the formation and growth of magnetic domains along the GB. We observe different types of domain wall growth; in most cases a domain wall nucleates at one edge of the bridge and then proceeds towards the other edge.Comment: 5 pages, 4 figures; submitted to Phys. Rev. Let

    β\beta-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment

    Get PDF
    The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass m(νe)m(\nu_\text{e}) with an unprecedented sensitivity of 0.2eV0.2\,\text{eV} (90\% C.L.) by precision electron spectroscopy close to the endpoint of the β\beta decay of tritium. We present a consistent theoretical description of the β\beta electron energy spectrum in the endpoint region, an accurate model of the apparatus response function, and the statistical approaches suited to interpret and analyze tritium β\beta decay data observed with KATRIN with the envisaged precision. In addition to providing detailed analytical expressions for all formulae used in the presented model framework with the necessary detail of derivation, we discuss and quantify the impact of theoretical and experimental corrections on the measured m(νe)m(\nu_\text{e}). Finally, we outline the statistical methods for parameter inference and the construction of confidence intervals that are appropriate for a neutrino mass measurement with KATRIN. In this context, we briefly discuss the choice of the β\beta energy analysis interval and the distribution of measuring time within that range.Comment: 27 pages, 22 figures, 2 table

    First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys

    Full text link
    We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x (BS-PT) alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that (i) BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary (MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the ferroelectric and piezoelectric properties of BS-PT are dominated by the onset of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as far as the computed values of the piezoelectric coefficient d_15 are concerned. While our results are generally consistent with experiment, they also suggest that certain intrinsic properties of BS-PT may be even better than has been indicated by experiments to date. We also discuss results for PZT that demonstrate the prominent role played by Pb displacements in its piezoelectric properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.

    Observables sensitive to absolute neutrino masses: A reappraisal after WMAP-3y and first MINOS results

    Get PDF
    In the light of recent neutrino oscillation and non-oscillation data, we revisit the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in single beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). In particular, we include the constraints coming from the first Main Injector Neutrino Oscillation Search (MINOS) data and from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year (3y) data, as well as other relevant cosmological data and priors. We find that the largest neutrino squared mass difference is determined with a 15% accuracy (at 2-sigma) after adding MINOS to world data. We also find upper bounds on the sum of neutrino masses Sigma ranging from ~2 eV (WMAP-3y data only) to ~0.2 eV (all cosmological data) at 2-sigma, in agreement with previous studies. In addition, we discuss the connection of such bounds with those placed on the matter power spectrum normalization parameter sigma_8. We show how the partial degeneracy between Sigma and sigma_8 in WMAP-3y data is broken by adding further cosmological data, and how the overall preference of such data for relatively high values of sigma_8 pushes the upper bound of Sigma in the sub-eV range. Finally, for various combination of data sets, we revisit the (in)compatibility between current Sigma and m_2beta constraints (and claims), and derive quantitative predictions for future single and double beta decay experiments.Comment: 18 pages, including 7 figure

    Cosmological implications of the KATRIN experiment

    Full text link
    The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put unprecedented constraints on the absolute mass of the electron neutrino, \mnue. In this paper we investigate how this information on \mnue will affect our constraints on cosmological parameters. We consider two scenarios; one where \mnue=0 (i.e., no detection by KATRIN), and one where \mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect estimates of some important cosmological parameters significantly. For example, the significance of ns<1n_s<1 and the inferred value of ΩΛ\Omega_\Lambda depend on the results from the KATRIN experiment.Comment: 13 page

    Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens.

    Get PDF
    BACKGROUND: Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS: We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS: Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior
    corecore