10 research outputs found

    High Agreement between Barrett Universal II Calculations with and without Utilization of Optional Biometry Parameters

    Get PDF
    Purpose: To examine the contribution of anterior chamber depth (ACD), lens thickness (LT), and white-to-white (WTW) measurements to intraocular lens (IOL) power calculations using the Barrett Universal II (BUII) formula. Methods: Measurements taken with the IOLMaster 700 (Carl Zeiss, Meditec AG, Jena, Germany) swept-source biometry of 501 right eyes of 501 consecutive patients undergoing cataract extraction surgery between January 2019 and March 2020 were reviewed. IOL power was calculated using the BUII formula, first through the inclusion of all measured variables and then by using partial biometry data. For each calculation method, the IOL power targeting emmetropia was recorded and compared for the whole cohort and stratified by axial length (AL) of the measured eye. Results: The mean IOL power calculated for the entire cohort using all available parameters was 19.50 ± 5.11 diopters (D). When comparing it to the results obtained by partial biometry data, the mean absolute difference ranged from 0.05 to 0.14 D; p < 0.001. The optional variables (ACD, LT, WTW) had the least effect in long eyes (AL ≥ 26 mm; mean absolute difference ranging from 0.02 to 0.07 D; p < 0.001), while the greatest effect in short eyes (AL ≤ 22 mm; mean absolute difference from 0.10 to 0.21 D; p < 0.001). The percentage of eyes with a mean absolute IOL dioptric power difference more than 0.25 D was the highest (32.0%) among the short AL group when using AL and keratometry values only. Conclusions: Using partial biometry data, the BUII formula in small eyes (AL ≤ 22 mm) resulted in a clinically significant difference in the calculated IOL power compared to the full biometry data. In contrast, the contribution of the optional parameters to the calculated IOL power was of little clinical importance in eyes with AL longer than 22 mm

    High Agreement between Barrett Universal II Calculations with and without Utilization of Optional Biometry Parameters

    Get PDF
    Purpose: To examine the contribution of anterior chamber depth (ACD), lens thickness (LT), and white-to-white (WTW) measurements to intraocular lens (IOL) power calculations using the Barrett Universal II (BUII) formula. Methods: Measurements taken with the IOLMaster 700 (Carl Zeiss, Meditec AG, Jena, Germany) swept-source biometry of 501 right eyes of 501 consecutive patients undergoing cataract extraction surgery between January 2019 and March 2020 were reviewed. IOL power was calculated using the BUII formula, first through the inclusion of all measured variables and then by using partial biometry data. For each calculation method, the IOL power targeting emmetropia was recorded and compared for the whole cohort and stratified by axial length (AL) of the measured eye. Results: The mean IOL power calculated for the entire cohort using all available parameters was 19.50 ± 5.11 diopters (D). When comparing it to the results obtained by partial biometry data, the mean absolute difference ranged from 0.05 to 0.14 D; p < 0.001. The optional variables (ACD, LT, WTW) had the least effect in long eyes (AL ≥ 26 mm; mean absolute difference ranging from 0.02 to 0.07 D; p < 0.001), while the greatest effect in short eyes (AL ≤ 22 mm; mean absolute difference from 0.10 to 0.21 D; p < 0.001). The percentage of eyes with a mean absolute IOL dioptric power difference more than 0.25 D was the highest (32.0%) among the short AL group when using AL and keratometry values only. Conclusions: Using partial biometry data, the BUII formula in small eyes (AL ≤ 22 mm) resulted in a clinically significant difference in the calculated IOL power compared to the full biometry data. In contrast, the contribution of the optional parameters to the calculated IOL power was of little clinical importance in eyes with AL longer than 22 mm

    New Horizons in the Treatment of Corneal Endothelial Dysfunction

    Get PDF
    The treatment of corneal endothelial dysfunction has experienced a revolutionary change in the past decades with the emergence of endothelial keratoplasty techniques: descemet stripping automated endothelial keratoplasty (DSAEK) and descemet membrane endothelial keratoplasty (DMEK). Recently, new treatments such as cultivated endothelial cell therapy, Rho-kinase inhibitors (ROCK inhibitors), bioengineered grafts, and gene therapy have been described. These techniques represent new lines of treatment for endothelial dysfunction. Their advantages are to help address the shortage of quality endothelial tissue, decrease the complications associated with tissue rejection, and reduce the burden of postoperative care following transplantation. Although further randomized clinical trials are required to validate these findings and prove the long-term efficacy of the treatments, the positive outcomes in preliminary clinical studies are a stepping stone to a promising future. Our aim is to review the latest available alternatives and advancements to endothelial corneal transplant

    Laser capsulotomy following cataract surgery: Comparing time to capsulotomy with implantation of two broadly used intraocular lenses

    No full text
    Purpose: The aim of this study is to compare the length of time from uneventful cataract surgery using one of two common posterior chamber intraocular lenses (IOLs) (hydrophilic versus hydrophobic acrylic) to laser capsulotomy. Materials and Methods: Retrospective analysis of all patients who underwent neodymium: yttrium-aluminum-garnet laser capsulotomy between 2011 and 2014 following uneventful phacoemulsification surgery at a tertiary university-affiliated medical center. Medical records were reviewed for demographics, ocular comorbidities, operative details, postoperative follow-up, and findings of the precapsulotomy ophthalmologic examination. Parameters, including age, sex, laterality, visual acuity, surgeon's experience, and time from cataract surgery to capsulotomy, were compared between patients who received hydrophilic (SeeLens AF, Kibbutz Hanita, Israel) or hydrophobic (AcrySof SA60AT, Alcon Laboratories, Fort Worth, TX, USA) IOLs. Results: The cohort included 222 patients (255 eyes), of which, 107 were male and 115 female, of mean age 73 ± 8 years. Mean interval from cataract surgery to laser capsulotomy was 24 months (range 2–70) and was significantly shorter in patients with SeeLens (23 ± 13 months) than AcrySof IOL implantation (28 ± 13 months, P = 0.04). Lens type remained significant in multivariate analysis after including surgeon's experience and age as potential confounders (P = 0.04). Conclusion: The hydrophilic SeeLens IOL is associated with a significantly shorter time interval from cataract surgery to laser capsulotomy than the hydrophobic AcrySof IOL

    Corneal Endothelial Decompensation after Ocular Chemical Burn: Description of a New Finding

    Full text link
    BACKGROUND Ocular chemical burn is an ophthalmological emergency. Therefore, chemical injuries should be promptly addressed in order to initiate the appropriate treatment as soon as possible and optimize the visual prognosis. We present a retrospective study of ten cases with ocular chemical burn including one with superglue and one with a liquid plaster material injury and describe their clinical course. HISTORY AND SIGNS Ten adult patients (34 - 92 years, 8 males) presented with moderate to severe alkali or neutral chemical burns in our emergency clinics. They exhibited a variable degree of conjunctival injection, limbal ischemia, corneal erosion, and Descemet's folds. THERAPY AND OUTCOME Patients were treated and complete corneal epithelial closure was achieved in all cases without significant signs of limbal stem cell insufficiency. Corneal endothelial insufficiency was observed in all cases. Nine patients had to be listed for corneal endothelial keratoplasty and one was treated with Descemet's stripping endothelial automated keratoplasty. CONCLUSIONS Isolated corneal endothelial decompensation after chemical burns has not yet been described. The pathophysiological explanation of this observation remains, however, unknown. In view of this rare complication, it is important to follow patients after chemical ocular burn for possible development of endothelial decompensation

    Table_1_Neural correlates of subjective cognitive decline in adults at high risk for Alzheimer’s disease.DOCX

    No full text
    IntroductionRecently, interest has emerged in subjective cognitive decline (SCD) as a potential precursor to Alzheimer’s disease (AD) dementia. Whether individuals with SCD harbor brain alterations in midlife, when AD-related pathology begins, is yet to be elucidated. Furthermore, the role of apolipoprotein ε4 (APOE ε4) allele, a robust AD risk factor, in the relationship between SCD and brain alterations is unknown. We examined whether APOE genotype modulates the association of SCD with brain measures in individuals at high AD risk.MethodsMiddle-aged adults with parental history of AD dementia underwent magnetic resonance imaging (MRI) and the Memory Functioning Questionnaire. Regression analysis tested the extent to which SCD was associated with activation during an functional MRI (fMRI) working-memory task, and white-matter microstructure. APOE ε4 genotype was tested as a moderator.ResultsAmong APOE ε4 carriers, but not among non-carriers, SCD was associated with higher activation in the anterior cingulate (p = 0.003), inferior, middle, and superior frontal cortices (p = 0.041, p = 0.048, p = 0.037, respectively); and with lower fractional anisotropy in the uncinate fasciculus (p = 0.002), adjusting for age, sex, and education.ConclusionIn middle aged, cognitively normal individuals at high AD risk, higher SCD was associated with greater brain alterations possibly reflecting incipient AD pathology. When accompanied by a family history of AD and an APOE ε4 allele, SCD may have important clinical value, allowing a window for early intervention and for participants’ stratification in AD prevention clinical trials.</p
    corecore