20 research outputs found

    Back to the "Gold Standard": How Precise is Hematocrit Detection Today?

    Full text link
    Introduction: The commonly used method for hematocrit detection, by visual examination of microcapillary tube, known as "micro-HCT", is subjective but remains one of the key sources for fast hematocrit evaluation. Analytical automation techniques have increased the standardization of RBC index detection; however, indirect hematocrit measurements by blood analyzer, the automated HCT, do not correlate well with "micro-HCT" results in patients with hematological pathologies. We aimed to overcome those disadvantages in "micro-HCT" analysis using "ImageJ" processing software. Methods: 223 blood samples from the "general population" and 19 from sickle cell disease patients were examined in parallel for hematocrit values using the automated HCT, standard "micro-HCT," and "ImageJ" micro-HCT methods. Results: For the "general population" samples, the "ImageJ" values were significantly higher than the corresponding values evaluated by standard "micro-HCT" and automated HCT, except for the 0 to 2 month old newborns, in which the automated HCT results were similar to the "ImageJ" evaluated HCT. Similar to the "general population" cohort, we found significantly higher values measured by "ImageJ" compared to either "micro-HCT" or the automated HCT in SCD patients. Correspondent differences for the MCV and MCHC were also found. Discussion: This study introduces the "micro-HCT" assessment technique using the image-analysis module of "ImageJ" software. This procedure allows overcoming most of the data errors associated with the standard "micro-HCT" evaluation and can replace the use of complicated and expensive automated equipment. The presented results may also be used to develop new standards for calculating hematocrit and associated parameters for routine clinical practice. Keywords: Image analysis; Microcapillary hematocrit; RBC indices

    The Impact of Ca2+ on Intracellular Distribution of Hemoglobin in Human Erythrocytes

    Full text link
    The membrane-bound hemoglobin (Hb) fraction impacts red blood cell (RBC) rheology and metabolism. Therefore, Hb–RBC membrane interactions are precisely controlled. For instance, the signaling function of membrane-bound deoxy-Hb and the structure of the docking sites in the cytosolic domain of the anion exchanger 1 (AE-1) protein are well documented; however, much less is known about the interaction of Hb variants with the erythrocyte’s membrane. Here, we identified factors other than O2 availability that control Hb abundance in the membrane-bound fraction and the possible variant-specific binding selectivity of Hb to the membrane. We show that depletion of extracellular Ca2+ by chelators, or its omission from the extracellular medium, leads to membrane-bound Hb release into the cytosol. The removal of extracellular Ca2+ further triggers the redistribution of HbA0 and HbA2 variants between the membrane and the cytosol in favor of membrane-bound HbA2. Both effects are reversible and are no longer observed upon reintroduction of Ca2+ into the extracellular medium. Fluctuations of cytosolic Ca2+ also impact the pre-membrane Hb pool, resulting in the massive transfer of Hb to the cellular cytosol. We hypothesize that AE-1 is the specific membrane target and discuss the physiological outcomes and possible clinical implications of the Ca2+ regulation of the intracellular Hb distribution

    Primary autoimmune myelofibrosis: A case report in a child

    No full text
    Abstract Autoimmune myelofibrosis (AIMF) is an uncommon cause of myelofibrosis associated with favorable outcome. Primary AIMF, AIMF without a known systemic autoimmune disorder, has been described in adults, but never in children. Here, we present, for the first time, an apparent case of primary AIMF in a 15‐year‐old boy admitted with profound hypoproliferative anemia

    The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease

    Get PDF
    <div><p>Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity.</p></div

    The Impact of Ca<sup>2+</sup> on Intracellular Distribution of Hemoglobin in Human Erythrocytes

    No full text
    The membrane-bound hemoglobin (Hb) fraction impacts red blood cell (RBC) rheology and metabolism. Therefore, Hb–RBC membrane interactions are precisely controlled. For instance, the signaling function of membrane-bound deoxy-Hb and the structure of the docking sites in the cytosolic domain of the anion exchanger 1 (AE-1) protein are well documented; however, much less is known about the interaction of Hb variants with the erythrocyte’s membrane. Here, we identified factors other than O2 availability that control Hb abundance in the membrane-bound fraction and the possible variant-specific binding selectivity of Hb to the membrane. We show that depletion of extracellular Ca2+ by chelators, or its omission from the extracellular medium, leads to membrane-bound Hb release into the cytosol. The removal of extracellular Ca2+ further triggers the redistribution of HbA0 and HbA2 variants between the membrane and the cytosol in favor of membrane-bound HbA2. Both effects are reversible and are no longer observed upon reintroduction of Ca2+ into the extracellular medium. Fluctuations of cytosolic Ca2+ also impact the pre-membrane Hb pool, resulting in the massive transfer of Hb to the cellular cytosol. We hypothesize that AE-1 is the specific membrane target and discuss the physiological outcomes and possible clinical implications of the Ca2+ regulation of the intracellular Hb distribution

    A cluster of significant -LogP values on BTA 29 at about 30 Mb (red arrow; Fig 2 and Table 2).

    No full text
    <p>Blue diamonds, -LogP values of the markers; Avg 100K, moving average -LogP values of windows of 23 markers (≈ 100Kb; see text). Note that for this cluster the peak value of the moving average exceeds the -LogP = 2.0 threshold chosen to declare significance.</p

    Tizioto <i>et al</i>. [27] differentially expressed genes found in the QTLRs of the present study.

    No full text
    <p>Tizioto <i>et al</i>. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0153423#pone.0153423.ref027" target="_blank">27</a>] differentially expressed genes found in the QTLRs of the present study.</p
    corecore