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Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot

cattle, caused by multiple pathogens that become more virulent in response to stress. As

clinical signs often go undetected and various preventive strategies failed, identification of

genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP)

was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Hol-

stein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62

animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Geno-

typing was performed using the Illumina BovineHD BeadChip according to the Infinium pro-

tocol. Moving average of -logP was used to map QTLs and Log drop was used to define

their boundaries (QTLRs). The combined procedure was efficient for high resolution map-

ping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previ-

ous studies. The QTLRs contain polymorphic functional and expression candidate genes to

affect kosher status, with putative immunological and wound healing activities. Kosher phe-

notyping was shown to be a reliable means to map QTLs affecting BRDmorbidity.

Introduction
Bovine respiratory disease (BRD) complex is the leading world-wide cause of morbidity and
mortality in feedlot cattle. It includes upper and lower respiratory tract infections, diphtheria
and pneumonia [1,2]. Due to immature functionality of the respiratory system in young cattle
[3], BRD occurs more frequently and severely at young age, regardless of immunological and
management considerations [4,5]. BRD is the most costly feedlot disease due to prevention and
treatment costs, morbidity, mortality, and production amortization that includes performance,
carcass merit, meat tenderness and palatability [1,2,6,7].
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BRD etiology is multifactorial, affected by a large number of stressors (e.g., weaning, trans-
portation, commingling and others), and viral (infectious bovine rhinotracheitis; IBR, bovine
virus diarrhea; BVD, bovine respiratory syncytial virus; BRSV) and bacterial pathogens (primar-
ily, Pasteurella multocida,Haemophilus somnus andMycoplasma hyponeumoniae). Many of
these pathogens are normally present in the upper respiratory tract, but convert to pathogenic
status as a consequence of stressful life history events [8]. Yet, individuals of the same age and
environment, when exposed to BRD pathogens, vary greatly in whether they develop the dis-
ease [9], and the severity of clinical symptoms [10]. This variation suggests that genetic control
is involved in susceptibility to BRD. Indeed, significant heritability for BRD resistance [11,12]
and differences among breeds [11,13] have been documented.

During the years, various strategies have been implemented to prevent or minimize the
prevalence of BRD. Among others, these include antibiotic treatment on a preventative or
metaphylactic basis, non-antibiotic alternatives and vaccination [4]. Unfortunately, these strat-
egies have collectively failed to reduce the prevalence of BRD (see citations in [14]). To date,
methods for detecting morbid cattle involve subjective visual appraisal and depend on the
stage and extent of the disease. However, clinical signs of BRD may often go undetected in
feedlot calves [15], emphasizing the need of an objective and reliable early risk predictor [5].
Genomic-based approaches may thus serve as additional methods for control of BRD.

The importance of the genome in determining resistance and susceptibility to a wide variety
of viral, bacterial and parasite-borne diseases is thoroughly documented [16,17]. Examples
include mapping of quantitative trait loci (QTL) affecting trypanotolerance in the N’Dama cat-
tle of West Africa [18], Marek’s Disease in layer chickens [19,20], and mastitis in Holstein
dairy cattle [21]. With genome wide mapping and selection procedures based on high density
SNP arrays [22], improving disease resistance through selection for resistance at the genome
level has become realistic. Furthermore, high-resolution mapping of the QTLs responsible for
genetic variation in resistance can serve as a platform to identify the causative genes themselves
[23], opening further possibilities for disease control through greater understanding of the
molecular mechanisms of resistance. For example, recent genome-wide association studies of
Crohn’s Disease identified 71 loci associated with the disease [24] and new pathogenic mecha-
nisms of the disease.

Reports on BRD QTL mapping are scarce. Using microsatellite markers, Neibergs et al. [25]
identified QTLs affecting BRD on BTA 2 and 26 in a Brahman × Hereford sire half-sib family.
Casas et al. [26] found association between BRD and SNPs in the ANKRA2 and CD180 genes
on BTA 20 in a Brahman x Angus cross. Neibergs et al. [14] conducted genome-wide associa-
tion study (GWAS) to map QTLs affecting BRD susceptibility in Holstein populations. Tizioto
et al. [27] examined transcriptomes from bronchial lymph nodes of cattle challenged with
three viral and three bacterial BRD pathogens, one at a time. Hundreds to thousands of genes
changed expression in response to the pathogen challenge; 140 of which were located in previ-
ously mapped BRD QTLs.

To phenotypically distinguish between control and case individuals, Neibergs et al. [14]
used common clinical signs of BRD, in combination with nasopharyngeal and pharyngeal
recess swabs for the diagnosis of pathogens. An alternative well-accepted tool for retrospective
diagnosis of BRD is lung lesions monitored at slaughter [28]. Among other categories, lung
lesions include abscesses, parenchymal fibrosis, adhesions and emphysema [29]. Wittum et al.
[15] found that damage resulting from BRD may leave persistent lesions in bovine lungs.
Interestingly, lung lesions resulting from BRD are often found in animals never recorded for
clinical BRD [2,6,15,30]. According to Gardner et al. [6], the high incidence of such cases
reflected subclinical events, viral rather than bacterial infection, or disease occurrence at ear-
lier stage, before calves were taken into feedlot. Still, pulmonary lesions at slaughter were
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indicative of BRD occurrence, which had a significant deleterious effect on production, inde-
pendent of previous diagnosis of clinical illness [15]. In spite of the fact that it is the only prac-
tical way to detect subclinical BRD, only a few studies used lung lesions as an indicator of
earlier life BRD episodes [4].

As mentioned above, Bryant et al. [29] classified lung adhesions in the cranioventral lobes
as a specific example of lung lesions. Adhesions are formed as a normal part of the body's
healing process and help to limit the spread of infection. They are fibrous bands of scar tissue
that span the pleural space, between the parietal and visceral layers of the pleura and often
between the lobes of the lungs, or between the lungs and the rib cage, and are caused by
repeated episodes of inflammation of the lungs. The fibrin bands may eventually dissolve
through fibrinolysis, and the traumatized site continues to heal, but there are cases in which
fibrinolysis is inhibited [31]. Thus, uncontrolled fibrosis may render the repair process patho-
genic, resulting in excess deposition of extracellular matrix (ECM) components, including col-
lagen, and replacement of normal tissue by permanent scar tissue, which influences organ
function [32]. In a recent report [33], calves free of pulmonary adhesions at slaughter were
found biologically and economically more efficient than their affected peers. Interestingly,
pleural adhesions found in ca. 40% of the calves accounted for reduced growth rate at early
life stages [2].

Kosher slaughtering, a routine procedure in Israel and other countries [34], offers particular
advantages for genetic analysis of BRD. Kosher slaughtering involves two steps: The actual
slaughter, and then a close and detailed examination of the lungs of the slaughtered animals for
adhesions. Cattle presenting lungs completely clear of adhesions, indicative of their having
been BRD free, are classed as “Glatt” kosher. Cattle presenting severe pulmonary adhesions,
indicative of one or more severe bouts of BRD, are classed as “non-kosher” or "treif". Animals
presenting light adhesions are classed as standard-kosher [35].

In the current study, we mapped BRD QTLs in Israeli Holstein male calves by means of
selective DNA pooling (SDP), using the kosher slaughtering three-level classification system to
distinguish between High (Glatt) and Low (Treif) resistant phenotypes, Numerous QTLs were
found and their surrounding regions (QTLRs) searched for candidate genes and for amino
acid (AA) polymorphisms within these genes. The candidate genes involved immunological
response and wound healing activities that include cell adhesion, extra cellular matrix (ECM)
remodeling, epithelial-to-mesenchyme transition, and profibrotic responses. The QTLRs and
their genes partially overlap previous QTLs mapping studies, supporting the use of kosher phe-
notype for BRD QTL mapping.

Results

Markers
Animals were allocated to High and Low resistant groups by a kosher inspection of lung adhe-
sions. Frequencies of allele B in the pools were obtained by Illumina software. Frequency differ-
ences between High and Low groups (Di) and an empirical estimate of the standard error of Di,
were used to obtain Comparison-wise-Type I error rate (P-values). The P-values over all auto-
somes are presented in S1 Fig. Table 1 shows critical marker P-values required to achieve sig-
nificance at the given PFP thresholds. A total of 749 markers were in the range of PFP� 0.2,
distributed over all autosomes. Of course, the number of QTLs is much less than the numbers
of significant markers, as many significant markers are associated with the same QTL. The esti-
mated number of falsified and true null hypotheses, n1 and n2 [36,37] were 2,114 and 568,449
respectively. Thus, effective power at PFP� 0.2 was 0.35.
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QTLRs detection
Visual inspection of chromosomal scatter charts (S1 Fig) revealed clusters of significant marker
-LogP values (e.g., Fig 1). We considered such clusters to represent QTLRs. Detailed examina-
tion of the makers in the QTLR showed that they were a mixture of significant markers and
non-significant markers, making it difficult to set boundaries for the QTLR. To circumvent
this, we used a moving average of marker -LogP values with a window size of 23 markers
(about 100 kb), and a Log drop of 1 to define QTLRs and their boundaries (details in Methods).
This worked well and clear peaks with monotonic shoulders were obtained. A moving average
of -LogP� 2, corresponding to P = 0.01, was set as the threshold value for declaration of a win-
dow as a QTLR, irrespective of whether the window contained a significant marker or not. Fig
2 presents a detailed example of defining a QTLR based on the cluster on BTA 29 (Fig 1).

Based on our criteria for declaring a QTLR, a total of 19 QTLs were found, distributed over
13 chromosomes (Table 2). Of these, 16 represent clearly distinguished clusters of significant

Table 1. Critical P-values and number of significant SNPs, by PFP level.

PFP Critical P Sig SNPs

< 0.01 1.63E-06 95

> 0.01–0.05 2.06E-05 148

> 0.05–0.10 6.91E-05 152

> 0.10–0.20 2.64E-04 354

> 0.20–0.40 1.02E-03 712

doi:10.1371/journal.pone.0153423.t001

Fig 1. A cluster of significant -LogP values on BTA 29 at about 30 Mb (red arrow; Fig 2 and Table 2).
Blue diamonds, -LogP values of the markers; Avg 100K, moving average -LogP values of windows of 23
markers (� 100Kb; see text). Note that for this cluster the peak value of the moving average exceeds the
-LogP = 2.0 threshold chosen to declare significance.

doi:10.1371/journal.pone.0153423.g001
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markers, while three represent windows that reached the -LogP< 2 criterion, but did not con-
tain significant markers. They were, however, characterized by a stretch of high value -LogP
values, without admixture of low -LogP value markers. Although declared as individual QTLs
on our Log drop 1 criterion, the two closely linked QTLRs 5 and 6 on BTA 2 may possibly rep-
resent only a single QTLR (Fig 3). The two QTLR cover the region of 111.5–112.3 Mb on BTA
2. Close inspection reveals an intermediate cluster of low -LogP values, around 112.0 Mb (red
arrow in Fig 3). It was this low cluster that dropped the -LogP of the intermediate windows
below the Log drop 1 of both sides, and thus split this region into two QTLR.

Conversely, QTLR 3, 4, and 14, each present two separated peaks but the intermediate
regions did not meet our Log drop criteria for declaration as separate QTLRs. Thus, they may
possibly represent a closely linked pair of QTLR each (Fig 4).

The QTLRs averaged 58 markers (range 44–101 markers), 255,478 bp (range 120,802–
475,690 bp), covering a total of 4,854,074 bp, 0.19% of total of the 2.6 Gb bovine genome.

Genes in the QTLR
The 19 QTLRs (Table 2) were composed of a total of 1,111 array markers (S1 Table, SNP report
sheet). Based on public databases, all except one of these array marker SNPs were non-coding.
These regions and markers were used for detailed bioinformatics analyses. Among the 1,111
markers, 545 mapped within 35 genes (Table 3). KCNE4 in QTLR 5 on BTA 2 is also presented
in Table 3, even though no SNP was mapped to it. Thus, Table 3 presents a total of 36 genes.
Among these, annotation data were available in David Database for only 20 genes.

Fig 2. Expanded view of the QTLR at 30 Mb on BTA 29 (Fig 1 and Table 2). Vertical bars on the X-axis,
QTLRmarker locations; Blue diamonds, -LogP values of the markers; Yellow squares: X-axis, mean location
of the markers in the window; Y-axis, mean -LogP of the window. QTLR start and end, up- and down-stream
boundary markers of the QTLR; Drop 1, up and down-stream Log drop 1 boundary windows; Top window, the
window with highest average -LogP; Top marker, the most significant marker of the cluster. Three uppermost
horizontal bars from top down: significance thresholds for individual markers at PFP = 0.05, 0.10 and 0.20,
respectively. Two lowest horizontal bars, from top down: significance threshold for moving average of
-LogP = 2.0; Log drop 1 threshold (from Peak window), respectively.

doi:10.1371/journal.pone.0153423.g002
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Considering all genes included within or in the 0.5 Mb flanks of the QTLRs, a total of 130
genes were found, of which annotation data were available for 98. Their biological processes
(BP), cellular components (CC), molecular function (MF) and metabolic pathways (KEGG)
are detailed in S1 Table (‘gene not clustered’ and ‘Kegg pathway’ sheets, respectively). Among
these 98 genes, we focused on 18 candidates, based on biological and statistical considerations
as detailed in the Discussion. We searched NCBI dbSNP for non-synonymous (AA substitu-
tion) polymorphisms, candidates to be the causative mutation of the found BRD effect. The
NCBI dbSNP present a substantial polymorphism in all 18 genes (Table 4). These genes aver-
aged 664.5 AA, 1,993.5 bp. All genes had SNPs in the coding regions (average 7.8% of all
SNPs); all had AA substitutions (average 78.4% of the coding SNPs) and all had AA substitu-
tions involving change of properties (average 60.4% of all AA substitutions). Although these
are published polymorphisms, not polymorphisms found in the study population, they present
the potential functional polymorphisms of the QTLR genes.

Discussion
BRD is the most prevalent disease in the cattle industry in many parts of the world, with symp-
toms that often go undetected. Using the kosher phenotypic classification we performed a

Table 2. Autosomal QTLRs.

QTLRs Avg of top windowd Top SNPe

QTLR BTA Starta Endb Length Distancec SNPs bp P Name bp P

1 1 32,762,621 33,000,982 238,362 49 32,922,068 7.2x10-2 rs43229554 32,892,280 2.7x10-15

2 1 92,104,370 92,235,747 131,378 59,103,388 46 92,172,725 2.8x10-1 rs42857937 92,194,011 9.8x10-10

3 1 136,141,849 136,617,538 475,690 43,906,102 101 136,234,581 8.3x10-2 rs109727900 136,269,109 2.6x10-5

4 2 103,578,039 103,858,856 280,818 71 103,604,186 7.4x10-2 rs110744763 103,622,473 7.4x10-6

5 2 111,562,742 111,992,526 429,785 7,703,886 73 111,702,216 1.3x10-2 rs41718804 111,920,205 1.7x10-3

6 2 112,003,692 112,306,444 302,753 11,166 46 112,177,753 4.7x10-2 rs109625954 112,094,944 3.9x10-4

7 2 114,545,480 114,830,722 285,243 2,239,036 50 114,692,948 1.1x10-1 rs42619825 114,679,293 1.4x10-7

8 8 41,810,125 42,014,357 204,233 47 41,951,028 2.5x10-1 rs109097634 41,958,832 1.6x10-6

9 9 103,591,751 103,738,680 146,930 64 103,644,910 6.1x10-3 rs109603023 103,658,874 7.2x10-8

10 10 55,539,090 55,719,332 180,243 57 55,606,200 1.7x10-2 rs43633836 55,591,993 2.3x10-3

11 12 7,221,507 7,469,740 248,234 53 7,357,534 1.3x10-2 rs134347273 7,306,510 8.9x10-5

12 15 2,491,081 2,679,720 188,640 45 2,593,214 4.5x10-3 rs132966783 2,560,990 8.1x10-5

13 15 35,995,220 36,429,977 434,758 33,315,500 72 36,183,585 2.1x10-2 rs110068780 36,198,691 3.7x10-5

14 16 38,146,214 38,575,149 428,936 97 38,370,212 2.0x10-2 rs136111126 38,382,048 2.0x10-5

15 18 58,445,044 58,667,459 222,416 44 58,614,523 1.4x10-1 rs43073607 58,634,645 2.1x10-5

16 22 55,739,008 55,889,024 150,017 47 55,804,668 3.9x10-2 rs135721055 55,798,814 5.2x10-5

17 24 26,944,578 27,174,025 229,448 56 27,068,708 1.2x10-1 rs134945287 27,080,758 2.8x10-5

18 26 43,067,146 43,222,533 155,388 46 43,172,648 8.4x10-2 rs132928018 43,178,710 1.6x10-5

19 29 30,739,666 30,860,467 120,802 47 30,788,390 1.0x10-1 rs134937987 30,812,830 5.0x10-8

aFirst marker of the first significant window.
bLast (23rd) marker of the last significant window.
cThe distance between the present and the previous QTLR on the same chromosome = the length between the end and the start of the up- and down-

stream QTLRs.
dThe window with highest -LogP value.
eMost significant SNP in the QTLR.

doi:10.1371/journal.pone.0153423.t002
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genome-wide association study (GWAS) to map QTL affecting BRD morbidity in Israeli Hol-
stein calves. SDP and Illumina BovineHD BeadChip were used to scan the genome.

Typically, significant markers found by a GWAS are intermingled with non-significant
markers (S1 Fig). The lack of a monotonic relation between marker location and marker signif-
icance makes it impossible to apply the widely used LOD drop method to set boundaries for
the QTLR. To circumvent this we used a moving average of -LogP. This worked well, and clear
peaks with monotonic shoulders were obtained (Fig 2). Using a threshold of moving average of
-LogP = 2 (corresponding to P = 0.01) to identify QTLs yielded 19 QTLRs distributed over 13
autosomes (Table 2).

The commonly used Log drop 1 method was effective in setting clear boundaries for the
QTLR, in one case distinguishing between QTLR as close as 11 Kb (between QTLRs 5 and 6;
Table 2 and Fig 2). While distinguishing between two very close QTL on BTA 2 (Fig 3), it nev-
ertheless merged possibly distinct QTL on BTAs 1, 2 and 16 (Fig 4).

Among the highly significant markers (with P< 0.001) in the QTLRs, 48.1% were generated
by markers with MAF< 0.15 (S1 Table). This high proportion could be a result of an underes-
timation of allele frequency variance for markers with low MAF. However, in this study P-val-
ues were obtained by SD adjusted to allele B frequency (see Materials and Methods). The
distribution of the SD values against allele B frequency showed no indication of a secondary
mode at the high SD levels that would indicate presence of an appreciable group of unstable
markers (data not shown). We are not aware of any report on the distribution to compare with
of MAF in QTLRs. The high proportion of low MAFs among highly significant QTLRs

Fig 3. Example of a region with twomapped QTLRs that are possibly only one putative QTLR.QTLRs
5 and 6 on BTA 2. Red and black vertical bars on the X-axis, QTLRs 5 and 6 marker locations; Blue
diamonds, -LogP values of the markers; Yellow squares (QTLR 5) and green diamonds (QTLR 6): X-axis,
mean location of the markers in the window; Y-axis, mean -LogP of the window; red arrow, inter QTLR
cluster. Three uppermost horizontal bars from top down: significance thresholds for individual markers at
PFP = 0.05, 0.10 and 0.20, respectively.

doi:10.1371/journal.pone.0153423.g003
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Fig 4. Examples of chromosomal regions with one QTLR but possibly including two putative QTLRs.
a. QTLR 3 on BTA 1. b. QTLR 4 on BTA 2. c. QTLR 14 on BTA 16. Vertical bars on the X-axis, QTLRmarkers
locations; Blue diamonds, -LogP values of the markers; Yellow squares: X-axis, mean location of the markers
in the window; Y-axis, mean -LogP of the window. Three uppermost horizontal bars from top down:
significance thresholds for individual markers at PFP = 0.05, 0.10 and 0.20, respectively.

doi:10.1371/journal.pone.0153423.g004
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Table 3. Complete list of all genes within the QTLRs or within 0.5 Mb upstream or downstream of the QTLR boundaries.

QTLR Gene Intergenic SNPs No.c

No. BTA Name/Flank SNPs

No.a P<0.01b

1 1 Upstream CADM2

CADM2 49 10 0

Downstream CADM2

2 1 Upstream NAALADL2

NAALADL2 46 8 0

Downstream NAALADL2

3 1 Upstream EPHB1, KY, CEP63, ANAPC13, AMOTL2

RYK 26 11 25

SLCO2A1 21 9

RAB6B 29 2

Downstream RAB6B, SRPRB, TF, LOC525947, TOPBP1, CDV3, BFSP2, TMEM108

4 2 Upstream VWC2L, BARD1, ABCA12

ABCA12 46 14 20

ATIC 5 1

Downstream ATIC, FN1, MIR2285L

5 2 Upstream PAX3, SGPP2

FARSB 5 1 58

LOC538702 1 0

MOGAT1 2 1

ACSL3 7 0

KCNE4 0

Downstream -

6 2 Upstream FARSB, LOC538702, MOGAT1, ACSL3, KCNE4

- 0 46

Downstream AP1S3, SCG2, WDFY1

7 2 Upstream -

NYAP2 16 0 34

Downstream LOC104969998

8 8 Upstream RFX3, LOC101905621, LOC101905770

KIAA0020 18 9 29

Downstream KCNV2, VLDLR

9 9 Upstream RPS6KA2, RNASET2, FGFR1OP, CCR6, GPR31, TTLL2, UNC93A

LOC101905262 5 0 59

Downstream MLLT4, KIF25, FRMD1, DACT2, SMOC2

10 10 Upstream PIGB, RAB27A, RSL24D1, SNORA25

UNC13C 1 0 56

Downstream -

11 12 Upstream -

- 0 53

Downstream -

12 15 Upstream MSANTD4

GRIA4 45 20 0

Downstream -

13 15 Upstream OTOG, USH1C, ABCC8, KCNJ11, NCR3LG1, NUCB2, PI3KC2a, RPS13

(Continued)
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markers could be a result of recent new mutations, selection, or both. This, however, is beyond
the scope of the present study.

Combining moving average with Log drop resulted in high resolution mapping, with aver-
age QTLR size of 0.26 Mb, allowing thorough bioinformatic analysis to identify candidate
genes in the proximity of those QTLR. Numerous databases and analyses were used to locate

Table 3. (Continued)

QTLR Gene Intergenic SNPs No.c

No. BTA Name/Flank SNPs

No.a P<0.01b

PLEKHA7 36 14 23

C15H11orf58 5 1

SOX6 8 0

Downstream -

14 16 Upstream NME7, BLZF1, CCDC181, SLC19A2, F5, SELP, SELL

SELL 6 0 24

SELE 16 5

C16H1orf112 16 4

SCYL3 5 0

KIFAP3 29 9

METTL11B 1 0

Downstream GORAB, PRRX1

15 18 Upstream SIGLEC5, MIR99B, MIRLET7E, MIR125A, HAS1, VN2R408P, ZNF613,
ZNF615, ZNF614, ZNF432, ZNF350

PPP2R1A 1 0 33

BOSTAUV1R416 1 0

BOSTAUV1R417 4 0

ZNF415 5 0

Downstream LOC539675, LOC787057, LOC100848895, LOC506495, LOC785630

16 22 Upstream SLC6A11, SLC6A1

HRH1 13 0 34

Downstream ATG7, VGLL4, TAMM41

17 24 Upstream DSC3

- 0 0 56

Downstream -

18 26 Upstream PLEKHA1, HTRA1, DMBT1, SPADH1, SPADH2

C26H10orf88 1 0 16

PSTK 1 0

IKZF5 5 0

ACADSB 23 15

Downstream HMX3, HMX2, BUB3

19 29 Upstream KIRREL3

KIRREL3 47 15 0

Downstream KIRREL3, LOC104976256

aNumber of SNPs within the gene;
bNumber of SNPs with P � 0.01 within the gene.
cNumber of SNPs in the QTLR in the regions between genes.

doi:10.1371/journal.pone.0153423.t003
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and categorize genes in and around the 19 QTLRs. Among the genes within or in the 0.5 Mb
flanks of the QTLRs (Table 3), we focused on 18 candidate gene, based on biological and statis-
tical considerations (Table 4). These included involvement of the genes in immunity, wound
repair, cells adhesion and pulmonary function; the number of significant SNPs within the gene;
and proximity of previously reported relevant QTLRs.

Within the 15 candidates that possess various immune functions, 5 genes, CADM2 [38]
AP1S3 [39], SELE [40,41], SELP [41] and SELL [5,41,42], are associated with adhesive activity,
ECM remodeling, epithelial-to-mesenchyme transition (EMT) and profibrotic activities. All
are part of the repair/wound healing process that might lead to the generation of adhesions
(Fig 5). Ten genes, SLCO2A1 [43], TF [44], ABCA12 [45], KIAA0020 [46], CCR6 [47], RAB27A
[48], PPP2R1A [49],HRH1 (GeneCards, http://www.genecards.org/), ATG7 [50,51] and IKZF5
[52] are known for their immunological activity. Three genes, NAALADL2 [53,54], SMOC2
[55,56] (GeneCards), PLEKHA7 [57,58], possess the above scar formation activities without
apparent immune function (Fig 5). Thus, although they may respond to immunological cues
[32], it is tempting to refer to these three candidates as potential exclusive markers for kosher
status while the other 15 may serve as markers for both BRD and kosher status. Interestingly,

Table 4. Non-synonymous polymorphisms in the selected 18 candidate genes as reported in NCBI dbSNP.

SNPsc Non-synon.d Properties
changee

QTLR BTA Gene AAa Bpb No. Prop. No. Prop. No. Prop.

1 1 CADM2 444 1,332 52 0.039 39 0.750 19 0.487

2 1 NAALADL2 882 2,646 156 0.059 130 0.833 78 0.600

3 1 SLCO2A1 644 1,932 98 0.051 72 0.735 37 0.514

3 1 TF 703 2,109 113 0.054 88 0.779 60 0.682

4 2 ABCA12 2,593 7,779 297 0.038 215 0.724 132 0.614

6 2 AP1S3 154 462 15 0.032 12 0.800 8 0.667

8 8 KIAA0020 647 1,941 136 0.070 105 0.772 68 0.648

9 9 SMOC2 445 1,335 214 0.160 196 0.916 115 0.587

9 9 CCR6 375 1,125 75 0.067 53 0.707 32 0.604

10 10 RAB27A 221 663 59 0.089 43 0.729 23 0.535

13 15 PLEKHA7 1,224 3,672 605 0.165 505 0.835 307 0.608

14 16 SELE 485 1,455 46 0.032 37 0.804 22 0.595

14 16 SELP 646 1,938 43 0.022 31 0.721 20 0.645

14 16 SELL 370 1,110 30 0.027 24 0.800 17 0.708

15 18 PPP2R1A 589 1,767 443 0.251 383 0.865 207 0.540

16 22 HRH1 491 1,473 191 0.130 158 0.827 94 0.595

16 22 ATG7 629 1,887 151 0.080 117 0.775 53 0.453

18 26 IKZF5 419 1,257 60 0.048 45 0.750 36 0.800

Avg 664.5 1,993.5 154.7 0.078 125.2 0.784 73.8 0.604

Min 154 462 15 0.022 12 0.707 8 0.453

Max 2,593 7,779 605 0.251 505 0.916 307 0.800

aNumber of amino acid.
bNumber of coding nucleotides in the gene.
cNo. and Prop.: number of coding SNPs and their proportion out of all coding nucleotides.
dNo. and Prop.: number of non- synonymous SNPs and their proportion out of all SNPs.
eNo. and Prop.: number of AA substitution involving change of AA physical properties, and their proportion out of all non-synonymous SNPs).

doi:10.1371/journal.pone.0153423.t004
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Tizioto et al. [27] showed that one of these three genes, SMOC2, was differentially expressed
in lymph nodes in response to BVD infection. It belongs to a protein family that mainly pres-
ents in tissues undergoing repair or remodeling [59]. Possibly, in response to BVD infection,
SMOC2 plays a role as an early wound repair gene.

The definition of the non-Kosher status as a phenotype characterized by pulmonary adhe-
sions makes the eight structural and common genes, namely, structural and immune functions,
interesting candidates. In line with the above, functional polymorphism in genes reported
herein may alter the molecular pathways involved in the wound healing process, rendering
individuals susceptible/resistant to the lung adhesion phenotype. If this would occur in the
three structural genes, it might exclusively affect the kosher phenotype. However, if it would
take place also in the common and/or immunity genes, the pulmonary adhesion phenotype
may be representative of BRD susceptibility/resistance as well.

A total of 2,253 AA substitutions were found in the NCBI dbSNP in 18 of the QTLR genes
(Table 4). This polymorphism constitutes a potential source of structural changes of the pro-
teins, and hence potentially a large number of quantitative alleles. It is more than enough to be
a source of protein conformation alleles that differ from one another in their molecular effi-
ciency. Thus, all QTLRs found in the present study harbor a plethora of candidate causative
mutations potentially responsible for the quantitative effects found.

Such a polymorphism in protein coding genes is in accord with the AA polymorphism
found in the chicken OCX gene by [60]. It suggests that a substantial portion of the AA may
not be important to the protein function.

Another evidence that a gene may be a QTG is changing the level of expression in response
to intrinsic and extrinsic cues. Tizioto et al. [27] searched for Differentially Expressed (DE)
genes in cattle bronchial lymph node in response to a separate challenge by each of 3 viral and
3 bacterial BRD pathogens. Forty-three of the DE genes were located in the QTLRs of the pres-
ent study (Table 5). On average 2.9 genes in a QTLR responded to a challenge by one or more

Fig 5. Genes and systems. Structural, genes involved in repair/wound healing processes without apparent
immune function, including: adhesive activity, extracellular matrix (ECM) remodeling, epithelial-to-
mesenchyme transition (EMT) and profibrotic activities; Immunity, genes involved in immunological activity;
Common, genes involved in both.

doi:10.1371/journal.pone.0153423.g005
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Table 5. Tizioto et al. [27] differentially expressed genes found in the QTLRs of the present study.

Gene QTLR BTA BRSVc BVDVd IBRe M. bovisf M. haemolyticag P. multocidah Pathogensa

TF 3 1 1 1 1 1 1 1 6

SLCO2A1 3 1 1 1 1 1 1 1 6

BARD1 4 2 1 1 1 0 0 0 3

FARSB 5 2 1 0 0 0 0 0 1

KCNE4 5 2 1 0 1 0 0 0 2

VLDLR 8 8 1 1 1 1 1 1 6

RFX3 8 8 1 1 1 0 0 0 3

RNASET2 9 9 1 1 1 0 0 0 3

MLLT4 9 9 1 0 1 0 0 0 2

RAB27A 10 10 1 1 1 0 1 0 4

OTOG 13 15 1 1 0 0 0 0 2

SELP 14 16 1 0 1 0 1 0 3

SELL 14 16 1 0 1 0 0 0 2

BLZF1 14 16 1 0 0 0 0 0 1

LOC787057 15 18 1 1 1 0 0 0 3

ZNF614 15 18 1 1 1 0 0 0 3

LOC785630 15 18 1 0 1 0 0 0 2

ZNF432 15 18 1 1 1 0 0 0 3

VGLL4 16 22 1 0 0 0 0 0 1

DSC3 17 24 1 1 1 0 0 0 3

DMBT1 18 26 1 1 1 0 0 1 4

IKZF5 18 26 1 1 1 0 0 0 3

PLEKHA1 18 26 1 1 1 0 0 0 3

KIRREL3 19 29 1 0 0 0 1 0 2

EPHB1 3 1 0 1 0 0 0 0 1

AMOTL2 3 1 0 1 0 0 0 0 1

TOPBP1 3 1 0 1 1 0 0 0 2

FN1 4 2 0 1 1 1 1 1 5

SCG2 6 2 0 1 1 0 1 0 3

UNC93A 9 9 0 1 1 0 0 0 2

SMOC2 9 9 0 1 0 0 0 0 1

USH1C 13 15 0 1 0 0 0 0 1

NUCB2 13 15 0 1 0 0 1 0 2

SELE 14 16 0 1 1 0 1 0 3

SLC19A2 14 16 0 1 1 0 0 0 2

F5 14 16 0 1 1 0 0 0 2

HRH1 16 22 0 1 0 0 0 1 2

HTRA1 18 26 0 1 1 1 1 1 5

BFSP2 3 1 0 0 1 0 0 0 1

GRIA4 12 15 0 0 1 0 0 0 1

ZNF613 15 18 0 0 1 0 1 0 2

RAB6B 3 1 0 0 0 0 1 0 1

PRRX1 14 16 0 0 0 0 1 0 1

Genesb 24 29 30 5 14 7 109

aNumber of pathogens affected the expression of the gene.
bNumber of genes affected by the pathogen.
cBovine respiratory syncytial virus.
dBovine viral diarrhea virus Infectious.
eBovine rhinotracheitis.
fMycoplasma bovis.
gMannheimia haemolytica.
hPasteurella multocida.

doi:10.1371/journal.pone.0153423.t005
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pathogens. Fifteen of the QTLRs included genes that changed expression in response to at least
one pathogen. QTLRs 3, 4, 8 and 18, contained genes that among them responded to all patho-
gens. All pathogens changed expression of genes in at least 4 QTLRs, averaging 9.3 QTLRs.
The 43 genes found by Tizioto et al. [27] located in the QTLR of the present study responded
to an average of 2.5 pathogens (Table 6), and 32 of these genes (74.4%) responded to more
than 2 pathogens (Table 5). The six pathogens changed expression of an average of 27.7 of our
43 genes (5 to 30; Table 6).

Thus, most of the QTLRs found in this study based on the kosher phenotype, harbor an
abundance of genes responding to BRD pathogens and thus are candidates for containing
QTG.

Some of the QTLRs found in this study are in the vicinity of related QTLs mapped previ-
ously. QTL 2 on BTA 1 (Table 2) is within a QTLR affecting "Veterinary treatments" located at
91.9–97.3 Mb [61] and near a QTL located at 91.6–91.7 Mb affecting heat tolerance in beef cat-
tle [62]. QTLR 5 on BTA 2 is near a BRD QTL [25]; QTLR 11 on BTA 12 and QTLR 18 on
BTA 26 overlap BRD QTLs [14] and a BVD QTL region associated with the bovine viral diar-
rhea persistent infection, a virus frequently identified as a causative pathogen for BRD out-
breaks [63]. QTL associated with carcass, production, reproduction and behavior traits were
reported in different cattle breeds in the region of QRLR 19 on BTA 20 [64].

Being a part of the regular routine in kosher slaughterhouses, obtaining the kosher pheno-
type is free of charge, allowing large scale studies. The function and expression of tens of candi-
date genes, ampleness of candidate AA polymorphisms in the QTLR genes, and proximity of
previously reported associated QTL, support the QTLRs found in this study, and thus support
kosher phenotyping as an efficient means of mapping BRD QTL, QTG and causative
mutations.

Materials and Methods

Samples and genotyping
All samples were collected as they came from male Holstein calves slaughtered in a commercial
slaughterhouse (Adom Adom abattoir, Israel) under stringent kosher meat inspection require-
ments. Genetically, the Israel Holstein cattle population is very homogeneous. There is a single
artificial insemination center that serves the entire country, so all female replacements are pro-
duced from the same pool of sires. Thus, the dams are a homogenous group and there is no rea-
son to suspect population subdivision or stratification. The calves in the study population were
produced over the course of a year, and hence represent a set of sire half-sib progeny groups.
Examination of the pedigree of the study animals did not uncover any differential allocation of

Table 6. Effects of QTLR’s genes and pathogens.

Pathogens/genea Genes/pathogenb

All Virus Bacteria

Avg 2.5 18.2 27.7 8.7

Min 1 5 24 5

Max 6 30 30 14

aNumber of pathogens which changed the expression of a gene.
bNumber of genes whose expression was changes by a pathogen.

doi:10.1371/journal.pone.0153423.t006
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herds, sires, or maternal grandsires among the Glatt kosher and non-kosher groups. Hence, we
believe that population structure was not a factor in our findings.

The inspector of the internal organs of the animal for assigning kosher status is trained to
look for lung adhesions in the animal both before and after its lungs are removed. To test a
lung, the inspector first removes all adhesions. If the lung is still intact it is classified as
"Kosher"; Torn adhesions that cause perforations in the lung render it "Non- Kosher" (NK);
Finally, lungs that are adhesion-free are referred to as “Glatt Kosher” (GK), referring to the fact
that the animal’s lungs do not have any adhesions. In the current study GK individuals were
taken as the High resistant group, while NK individuals were taken as the Low resistant group,
as also recently appeared in Hayes et al. [65].

Blood was sampled immediately after slaughter, using evacuated tubes (Greiner Bio-One
GmbH, Kremsmunster, Austria) containing EDTA as anticoagulant. DNA was isolated from
the whole blood using Sigma DNA extraction kit, according to the manufacturer's instructions.
DNA was quantified using NanoDrop (Wilmington, DE) spectrophotometry and purity was
estimated using the 260/280 ratio. The quality control was performed on each sample to verify
the DNA integrity on Invitrogen E-Gel 1% Agarose Gel.

Pools were constituted as reported by Strillacci et al. [66]. Five GK and two NK pools were
made of 21 − 31 Holstein male calves each (Table 7).

The pooled DNA samples were each genotyped in two duplicates, on two independent
microarrays for a total of 14 microarray positions. Genotyping was performed at the University
of Milan using the Illumina BovineHD BeadChip (777,962 SNPs). Each analysis was based on
the genomic position of SNPs according to the bovine UMD3.1 genome assembly. Proportion
in the pools of the Allele defined by Illumina as B (pB) was obtained by Illumina software.

Quality Control (QC). Quality control filters were: SNP mapped to specific autosome
location; no more than 50% or 25% missing genotypes for pools or markers, respectively; no
more than a difference of 0.10 between the pB values of the two duplicates of the same pool-
marker combination; and a minimum of 0.05 average marker pB. A total of 570,563 autosomal
markers were retained after the QC and used to map QTLs.

Table 7. Number of individuals in the pools.

Poola Calvesb

GKc

1 27

2 28

3 23

4 21

5 23

NKd

6 31

7 31

Total

GKc 122

NKd 62

All 184

aOrdinal number of the pool.
bNumber of calves in the pool.
cGlatt kosher.
dNon-kosher.

doi:10.1371/journal.pone.0153423.t007
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Statistical Methods
QTLMapping: Testing for significance of marker-trait association. Let pBijk be the

mean frequency of the B-allele across both duplicate arrays of the ith marker in the jth pool of
the kth tail.

i = 1 −M, where M is the total number of markers analyzed;
j = 1 − 5 for the GK pools, j = 1 − 2 for the NK pools;
k = 1 − 2, where 1 = GK pools, and 2 = NK pools.
We used a single-marker test for marker-trait association, where CWER P-value for the ith

marker was calculated as
Pi = 2 x the area of the standard normal curve to the right of

Zi ¼ Di=SEðDÞ ð1Þ

where,
Di = pBi.1 − pBi.2;
pBi.1 = mean pBij1 across the 5 GK pools;
pBi.2 = mean pBij2 across the 2 NK pools.
For SE(Di) we used an empirical estimate of the standard erroof Di under the null hypothe-

sis of absence of marker-QTL association. This estimate is based on the variance among indi-
vidual replicate pools within the same tail [67]. The basic assumption is that under the null
hypothesis, the sampling variance among individual pools across tails is the same as the sam-
pling variance among individual pools within tails. On this assumption, it follows from ele-
mentary principles, that

SE2ðDiÞ ¼ SE2ðpBi:1Þ þ SE2ðpBi:2Þ ð2Þ

¼ VarðpBi:1Þ=5þ VarðpBi:2Þ=2 ð3Þ

where,
Var(pBi.1) = the variance among the pBij1 of the 5 replicate pools in the GK tail;
Var(pBi.2) = the variance among the pBij2 of the 2 replicate pools in the NK tail.
We expect Var(pBi.1) = (VarpBi.2) to be the same, hence denoted Var(pBi). Then the best

estimate of Var(pBi) will be the mean of Var(pBi.1) and Var(pBi.2) weighted by the number of
degrees of freedom in each variance.

VarðpBiÞ ¼ ð4VarðpBi:1Þ þ VarðpBi:2ÞÞ=5 ð4Þ

and

SE2ðDiÞ ¼ SE2ðpBi:1Þ þ SE2ðpBi:2Þ ð5Þ

¼ VarðpBiÞ=5þ VarðpBiÞ=2 ¼ 0:7VarðpBiÞ ð6Þ

Because the estimate of Var(pBi) is based on a small number of pools, we used a global esti-
mate of Var(pBi), averaged across markers and denoted Var(pB), as our estimate of the sam-
pling variance of pBi across pools. Because pB is a binomial variate, Var(pB) is a function of
pB(1-pB), which maximizes at pB = 0.5 and drops off to either side. Thus, each marker requires
an appropriate SE2(D), depending on its frequency. Consequently, we binned the markers in
bins of width 0.1 from 0.0 to 1.0, according to their average pB across all pools (Avg pBi), and
calculated average Var(pB) across the markers in each bin. Table 8 shows that indeed Var(pB)
maximized in the range 0.4 to 0.6, dropping off to either side, thus justifying the use of Var(pB)
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according the marker mean pB. As a result, SE2D differed somewhat for the different markers,
according to marker frequency in the pools.

The proportion of false positives (PFP; [37]) was used to correct for multiple tests.
QTL regions (QTLRs): Declaration of a QTLR. While searching for regions containing

QTLs (QTLRs), significance of a single marker may not be enough to declare a QTLR, as a
singleton significant P, without any support from surrounding markers, is prone to be false
positive. On the other hand, visual inspection of chromosomal scatter charts reveals clusters
of significant marker -LogP values (e.g., Fig 1). We interpret these clusters as putative QTLR.
Note, however, that high -LogP values are interspersed with very low values across the clus-
ter region. This behavior is related to complex LD patterns observed across small chromo-
somal regions [68]. Nevertheless, average -LogP value across a cluster region will be greater
than in the adjoining regions lacking a concentration of high -LogP markers. Thus, to iden-
tify the clusters quantitatively, assign them an overall -LogP value, and determine their
boundaries, we used a moving average of -LogP in 1 nucleotide steps taken across a window
of markers. QTLRs were declared on the basis of windows having average -LogP above some
chosen threshold. For the present study, average spacing between markers was 4,394 bp.
Hence, windows of size 23 markers, equivalent to an average window size of 100 Kb were
used. The size of a window was chosen to give a reasonable physical length yet not be overly
influenced by the -LogP value of any single marker. A moving average of -LogP = 2, corre-
sponding to P = 0.01, was set as the threshold value for declaration of a window as a QTLR.
This threshold was set to give a reasonable number of ranked QTLR for further study in
depth.

The windows worked well, and clear peaks with monotonic shoulders were obtained. See
Fig 2 for a detailed example of the cluster of Fig 1. For this cluster, a run of 8 consecutive win-
dows was found, all with a moving average above the chosen threshold of -LogP = 2. The top
window among these had average -LogP = 2.470. The windows are located on the chromosome
by the average location of their markers. The locations of the markers in the top window aver-
aged 30,788,390, and this was taken as the point location of the QTL. The marker in this cluster
with highest -LogP value (SNP BovineHD2900009163 located at 30,812,830 bp, -LogP = 7.304)
was contained within this window, at a remove of 20,440 bp from the window average marker
location.

Table 8. Weighted average of variances (Var(pB) of marker frequencies among replicates within GK
and NK tails, pooled across all markers within bins.

Avg pBi Var(pB)

� 0.1 0.00091

> 0.1–0.2 0.00562

> 0.2–0.3 0.00718

> 0.3–0.4 0.00796

> 0.4–0.5 0.00833

> 0.5–0.6 0.00847

> 0.6–0.7 0.00827

> 0.7–0.8 0.00716

> 0.8–0.9 0.00492

> 0.9–1.0 0.00109

Binning is by average marker frequency across all pools (Avg pBi).

doi:10.1371/journal.pone.0153423.t008
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Setting the boundaries of the QTLR. The popular LOD drop method [69] works well
when applied to family-based linkage mapping and the low-density microsatellite maps of the
previous generation of QTL mapping. In such studies, there is usually a monotonic inverse
relation between marker significance and marker location relative to the most significant
marker; with marker significance ascending monotonically marker by marker to the most sig-
nificant marker and descending monotonically from that point. With GWAS and high-density
marker maps, however, we are faced with the above-mentioned phenomenon where highly sig-
nificant and non-significant markers are interspersed across the cluster. Consequently, there is
no longer a monotonic relation between marker location and marker significance, making it
impossible to apply the LOD drop method. That is, considering -LogP values of individual
markers of the cluster, going out from the putative point location of the QTL (the most signifi-
cant marker of the cluster), one will meet one or more non-significant markers, ostensibly set-
ting a LOD drop boundary, but then just beyond these, are a new series of significant markers,
clearly part of the same cluster and QTLR (e. g., Fig 2).

We found that the moving windows present a monotonic inverse relation of window loca-
tion and window average -LogP values relative to the top window, forming a clear peak. This
allowed the use of the LOD drop method for setting QTLR boundaries. For the present study,
since we did not have LOD scores but -LogP, we used instead a -LogP drop of 1 (denoted "Log
drop"). As noted above, for the cluster on BTA 29, the top window had average -LogP = 2.470.
Accordingly, the Log drop 1 boundary of the QTLR were at -LogP = 1.470. The upstream and
downstream windows with means closest to this value (-LogP = 1.470 and 1.492, respectively;
Fig 2) were taken as the boundary windows. Since the windows are located by the average loca-
tion of their markers, the actual boundaries of the QTLR were from the first marker of the
upstream boundary window, to the final marker of the downstream boundary window. These
markers were taken to define the final boundaries of the QTLR.

Distinguishing adjoining clusters. When two clusters and consequent runs of windows
above the threshold were close to each other, two top windows and two peaks are seen (Figs 3
and 4). In this case, declaring the region as consisting of one or two QTLRs was based on the
-LogP values of the region between the two top windows, relative to the lower of the Log drop 1
boundary thresholds of the two peaks. If the entire region between the peaks was above the
higher Log drop 1 threshold, they were taken as one QTLR; otherwise, they were taken as two
separate QTLRs. In the latter case, the exact boundary between the QTLRs was the window
with lowest -LogP value.

Bioinformatics
The SNPchiMp database [70] was used to convert the Illumina SNP name to the rsID (the SNP
accession number used to search a SNP in all public databases). The rsID was used in NCBI
database (http://www.ncbi.nlm.nih.gov/) to verify the precise position (intronic-exonic position,
close to gene) of each SNP in respect to a gene. With one exception, none of the analyzed SNPs
was in a coding region. SNP location and gene annotation were according to the UMD3.1.1
assembly. The full Ensembl v79 gene set for the autosomal chromosomes was downloaded
(http://www.ensembl.org/biomart/martview/76d1cab099658c68bde77f7daf55117e). To identify
the genes located within the QTLRs and inside 0.5 Mb intervals flanking the position of each
SNPmarker that define the same regions, we created a consensus list (among QTLRs and down-
loaded genes) using the BedTools software [71].

GO and pathway analyses were performed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/). GO terms were used
to categorize candidate genes in terms of their functions.
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