335 research outputs found
The locus of points of the Hilbert scheme with bounded regularity
In this paper we consider the Hilbert scheme parameterizing
subschemes of with Hilbert polynomial , and we investigate its
locus containing points corresponding to schemes with regularity lower than or
equal to a fixed integer . This locus is an open subscheme of
and, for every , we describe it as a locally closed
subscheme of the Grasmannian given by a set of equations of
degree and linear inequalities in the coordinates
of the Pl\"ucker embedding.Comment: v2: new proofs relying on the functorial definition of the Hilbert
scheme. v3: Sections reorganized, new self-contained proof of the
representability of the Hilbert functor with bounded regularity (Section 6
Computing Small Certificates of Inconsistency of Quadratic Fewnomial Systems
B{\'e}zout 's theorem states that dense generic systems of n multivariate
quadratic equations in n variables have 2 n solutions over algebraically closed
fields. When only a small subset M of monomials appear in the equations
(fewnomial systems), the number of solutions may decrease dramatically. We
focus in this work on subsets of quadratic monomials M such that generic
systems with support M do not admit any solution at all. For these systems,
Hilbert's Nullstellensatz ensures the existence of algebraic certificates of
inconsistency. However, up to our knowledge all known bounds on the sizes of
such certificates -including those which take into account the Newton polytopes
of the polynomials- are exponential in n. Our main results show that if the
inequality 2|M| -- 2n \sqrt 1 + 8{\nu} -- 1 holds for a quadratic
fewnomial system -- where {\nu} is the matching number of a graph associated
with M, and |M| is the cardinality of M -- then there exists generically a
certificate of inconsistency of linear size (measured as the number of
coefficients in the ground field K). Moreover this certificate can be computed
within a polynomial number of arithmetic operations. Next, we evaluate how
often this inequality holds, and we give evidence that the probability that the
inequality is satisfied depends strongly on the number of squares. More
precisely, we show that if M is picked uniformly at random among the subsets of
n + k + 1 quadratic monomials containing at least (n 1/2+)
squares, then the probability that the inequality holds tends to 1 as n grows.
Interestingly, this phenomenon is related with the matching number of random
graphs in the Erd{\"o}s-Renyi model. Finally, we provide experimental results
showing that certificates in inconsistency can be computed for systems with
more than 10000 variables and equations.Comment: ISSAC 2016, Jul 2016, Waterloo, Canada. Proceedings of ISSAC 201
Binomial Ideals and Congruences on Nn
Producción CientÃficaA congruence on Nn is an equivalence relation on Nn that is compatible with the additive structure. If k is a field, and I is a binomial ideal in k[X1,…,Xn] (that is, an ideal generated by polynomials with at most two terms), then I induces a congruence on Nn by declaring u and v to be equivalent if there is a linear combination with nonzero coefficients of Xu and Xv that belongs to I. While every congruence on Nn arises this way, this is not a one-to-one correspondence, as many binomial ideals may induce the same congruence. Nevertheless, the link between a binomial ideal and its corresponding congruence is strong, and one may think of congruences as the underlying combinatorial structures of binomial ideals. In the current literature, the theories of binomial ideals and congruences on Nn are developed separately. The aim of this survey paper is to provide a detailed parallel exposition, that provides algebraic intuition for the combinatorial analysis of congruences. For the elaboration of this survey paper, we followed mainly (Kahle and Miller Algebra Number Theory 8(6):1297–1364, 2014) with an eye on Eisenbud and Sturmfels (Duke Math J 84(1):1–45, 1996) and Ojeda and Piedra Sánchez (J Symbolic Comput 30(4):383–400, 2000).National Science Foundation (grant DMS-1500832)Ministerio de EconomÃa, Industria y Competitividad (project MTM2015-65764-C3-1)Junta de Extremadura (grupo de investigación FQM-024
An inclusion result for dagger closure in certain section rings of abelian varieties
We prove an inclusion result for graded dagger closure for primary ideals in
symmetric section rings of abelian varieties over an algebraically closed field
of arbitrary characteristic.Comment: 11 pages, v2: updated one reference, fixed 2 typos; final versio
A representation formula for maps on supermanifolds
In this paper we analyze the notion of morphisms of rings of superfunctions
which is the basic concept underlying the definition of supermanifolds as
ringed spaces (i.e. following Berezin, Leites, Manin, etc.). We establish a
representation formula for all morphisms from the algebra of functions on an
ordinary manifolds to the superalgebra of functions on an open subset of
R^{p|q}. We then derive two consequences of this result. The first one is that
we can integrate the data associated with a morphism in order to get a (non
unique) map defined on an ordinary space (and uniqueness can achieved by
restriction to a scheme). The second one is a simple and intuitive recipe to
compute pull-back images of a function on a manifold by a map defined on a
superspace.Comment: 23 page
Linear resolutions of powers and products
The goal of this paper is to present examples of families of homogeneous
ideals in the polynomial ring over a field that satisfy the following
condition: every product of ideals of the family has a linear free resolution.
As we will see, this condition is strongly correlated to good primary
decompositions of the products and good homological and arithmetical properties
of the associated multi-Rees algebras. The following families will be discussed
in detail: polymatroidal ideals, ideals generated by linear forms and Borel
fixed ideals of maximal minors. The main tools are Gr\"obner bases and Sagbi
deformation
On rationality of the intersection points of a line with a plane quartic
We study the rationality of the intersection points of certain lines and
smooth plane quartics C defined over F_q. For q \geq 127, we prove the
existence of a line such that the intersection points with C are all rational.
Using another approach, we further prove the existence of a tangent line with
the same property as soon as the characteristic of F_q is different from 2 and
q \geq 66^2+1. Finally, we study the probability of the existence of a rational
flex on C and exhibit a curious behavior when the characteristic of F_q is
equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case;
Conjecture 1 from the previous version is proved wron
Zero Order Estimates for Analytic Functions
The primary goal of this paper is to provide a general multiplicity estimate.
Our main theorem allows to reduce a proof of multiplicity lemma to the study of
ideals stable under some appropriate transformation of a polynomial ring. In
particular, this result leads to a new link between the theory of polarized
algebraic dynamical systems and transcendental number theory. On the other
hand, it allows to establish an improvement of Nesterenko's conditional result
on solutions of systems of differential equations. We also deduce, under some
condition on stable varieties, the optimal multiplicity estimate in the case of
generalized Mahler's functional equations, previously studied by Mahler,
Nishioka, Topfer and others. Further, analyzing stable ideals we prove the
unconditional optimal result in the case of linear functional systems of
generalized Mahler's type. The latter result generalizes a famous theorem of
Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it
gives a counterpart in the case of functional systems for an important
unconditional result of Nesterenko (1977) concerning linear differential
systems. In summary, we provide a new universal tool for transcendental number
theory, applicable with fields of any characteristic. It opens the way to new
results on algebraic independence, as shown in Zorin (2010).Comment: 42 page
The Theory of the Interleaving Distance on Multidimensional Persistence Modules
In 2009, Chazal et al. introduced -interleavings of persistence
modules. -interleavings induce a pseudometric on (isomorphism
classes of) persistence modules, the interleaving distance. The definitions of
-interleavings and generalize readily to multidimensional
persistence modules. In this paper, we develop the theory of multidimensional
interleavings, with a view towards applications to topological data analysis.
We present four main results. First, we show that on 1-D persistence modules,
is equal to the bottleneck distance . This result, which first
appeared in an earlier preprint of this paper, has since appeared in several
other places, and is now known as the isometry theorem. Second, we present a
characterization of the -interleaving relation on multidimensional
persistence modules. This expresses transparently the sense in which two
-interleaved modules are algebraically similar. Third, using this
characterization, we show that when we define our persistence modules over a
prime field, satisfies a universality property. This universality result
is the central result of the paper. It says that satisfies a stability
property generalizing one which is known to satisfy, and that in
addition, if is any other pseudometric on multidimensional persistence
modules satisfying the same stability property, then . We also show
that a variant of this universality result holds for , over arbitrary
fields. Finally, we show that restricts to a metric on isomorphism
classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in
Foundations of Computational Mathematics. 36 page
Support varieties for selfinjective algebras
Support varieties for any finite dimensional algebra over a field were
introduced by Snashall-Solberg using graded subalgebras of the Hochschild
cohomology. We mainly study these varieties for selfinjective algebras under
appropriate finite generation hypotheses. Then many of the standard results
from the theory of support varieties for finite groups generalize to this
situation. In particular, the complexity of the module equals the dimension of
its corresponding variety, all closed homogeneous varieties occur as the
variety of some module, the variety of an indecomposable module is connected,
periodic modules are lines and for symmetric algebras a generalization of
Webb's theorem is true
- …