335 research outputs found

    The locus of points of the Hilbert scheme with bounded regularity

    Full text link
    In this paper we consider the Hilbert scheme Hilbp(t)nHilb_{p(t)}^n parameterizing subschemes of PnP^n with Hilbert polynomial p(t)p(t), and we investigate its locus containing points corresponding to schemes with regularity lower than or equal to a fixed integer r′r'. This locus is an open subscheme of Hilbp(t)nHilb_{p(t)}^n and, for every s≥r′s\geq r', we describe it as a locally closed subscheme of the Grasmannian Grp(s)N(s)Gr_{p(s)}^{N(s)} given by a set of equations of degree ≤deg(p(t))+2\leq \mathrm{deg}(p(t))+2 and linear inequalities in the coordinates of the Pl\"ucker embedding.Comment: v2: new proofs relying on the functorial definition of the Hilbert scheme. v3: Sections reorganized, new self-contained proof of the representability of the Hilbert functor with bounded regularity (Section 6

    Computing Small Certificates of Inconsistency of Quadratic Fewnomial Systems

    Get PDF
    B{\'e}zout 's theorem states that dense generic systems of n multivariate quadratic equations in n variables have 2 n solutions over algebraically closed fields. When only a small subset M of monomials appear in the equations (fewnomial systems), the number of solutions may decrease dramatically. We focus in this work on subsets of quadratic monomials M such that generic systems with support M do not admit any solution at all. For these systems, Hilbert's Nullstellensatz ensures the existence of algebraic certificates of inconsistency. However, up to our knowledge all known bounds on the sizes of such certificates -including those which take into account the Newton polytopes of the polynomials- are exponential in n. Our main results show that if the inequality 2|M| -- 2n ≤\le \sqrt 1 + 8{\nu} -- 1 holds for a quadratic fewnomial system -- where {\nu} is the matching number of a graph associated with M, and |M| is the cardinality of M -- then there exists generically a certificate of inconsistency of linear size (measured as the number of coefficients in the ground field K). Moreover this certificate can be computed within a polynomial number of arithmetic operations. Next, we evaluate how often this inequality holds, and we give evidence that the probability that the inequality is satisfied depends strongly on the number of squares. More precisely, we show that if M is picked uniformly at random among the subsets of n + k + 1 quadratic monomials containing at least Ω\Omega(n 1/2+ϵ\epsilon) squares, then the probability that the inequality holds tends to 1 as n grows. Interestingly, this phenomenon is related with the matching number of random graphs in the Erd{\"o}s-Renyi model. Finally, we provide experimental results showing that certificates in inconsistency can be computed for systems with more than 10000 variables and equations.Comment: ISSAC 2016, Jul 2016, Waterloo, Canada. Proceedings of ISSAC 201

    Binomial Ideals and Congruences on Nn

    Get PDF
    Producción CientíficaA congruence on Nn is an equivalence relation on Nn that is compatible with the additive structure. If k is a field, and I is a binomial ideal in k[X1,…,Xn] (that is, an ideal generated by polynomials with at most two terms), then I induces a congruence on Nn by declaring u and v to be equivalent if there is a linear combination with nonzero coefficients of Xu and Xv that belongs to I. While every congruence on Nn arises this way, this is not a one-to-one correspondence, as many binomial ideals may induce the same congruence. Nevertheless, the link between a binomial ideal and its corresponding congruence is strong, and one may think of congruences as the underlying combinatorial structures of binomial ideals. In the current literature, the theories of binomial ideals and congruences on Nn are developed separately. The aim of this survey paper is to provide a detailed parallel exposition, that provides algebraic intuition for the combinatorial analysis of congruences. For the elaboration of this survey paper, we followed mainly (Kahle and Miller Algebra Number Theory 8(6):1297–1364, 2014) with an eye on Eisenbud and Sturmfels (Duke Math J 84(1):1–45, 1996) and Ojeda and Piedra Sánchez (J Symbolic Comput 30(4):383–400, 2000).National Science Foundation (grant DMS-1500832)Ministerio de Economía, Industria y Competitividad (project MTM2015-65764-C3-1)Junta de Extremadura (grupo de investigación FQM-024

    An inclusion result for dagger closure in certain section rings of abelian varieties

    Full text link
    We prove an inclusion result for graded dagger closure for primary ideals in symmetric section rings of abelian varieties over an algebraically closed field of arbitrary characteristic.Comment: 11 pages, v2: updated one reference, fixed 2 typos; final versio

    A representation formula for maps on supermanifolds

    Get PDF
    In this paper we analyze the notion of morphisms of rings of superfunctions which is the basic concept underlying the definition of supermanifolds as ringed spaces (i.e. following Berezin, Leites, Manin, etc.). We establish a representation formula for all morphisms from the algebra of functions on an ordinary manifolds to the superalgebra of functions on an open subset of R^{p|q}. We then derive two consequences of this result. The first one is that we can integrate the data associated with a morphism in order to get a (non unique) map defined on an ordinary space (and uniqueness can achieved by restriction to a scheme). The second one is a simple and intuitive recipe to compute pull-back images of a function on a manifold by a map defined on a superspace.Comment: 23 page

    Linear resolutions of powers and products

    Full text link
    The goal of this paper is to present examples of families of homogeneous ideals in the polynomial ring over a field that satisfy the following condition: every product of ideals of the family has a linear free resolution. As we will see, this condition is strongly correlated to good primary decompositions of the products and good homological and arithmetical properties of the associated multi-Rees algebras. The following families will be discussed in detail: polymatroidal ideals, ideals generated by linear forms and Borel fixed ideals of maximal minors. The main tools are Gr\"obner bases and Sagbi deformation

    On rationality of the intersection points of a line with a plane quartic

    Full text link
    We study the rationality of the intersection points of certain lines and smooth plane quartics C defined over F_q. For q \geq 127, we prove the existence of a line such that the intersection points with C are all rational. Using another approach, we further prove the existence of a tangent line with the same property as soon as the characteristic of F_q is different from 2 and q \geq 66^2+1. Finally, we study the probability of the existence of a rational flex on C and exhibit a curious behavior when the characteristic of F_q is equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case; Conjecture 1 from the previous version is proved wron

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then d≤dId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true
    • …
    corecore