7,839 research outputs found
Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1
A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented
Hardware simulation of KU-band spacecraft receiver and bit synchronizer, phase 2, volume 1
The acquisition behavior of the PN subsystem of an automatically acquiring spacecraft receiver was studied. A symbol synchronizer subsystem was constructed and integrated into the composite simulation of the receiver. The overall performance of the receiver when subjected to anomalies such as signal fades was evaluated. Potential problems associated with PN/carrier sweep interactions were investigated
Ground State Spin Structure of Strongly Interacting Disordered 1D Hubbard Model
We study the influence of on-site disorder on the magnetic properties of the
ground state of the infinite U 1D Hubbard model. We find that the ground state
is not ferromagnetic. This is analyzed in terms of the algebraic structure of
the spin dependence of the Hamiltonian. A simple explanation is derived for the
1/N periodicity in the persistent current for this model.Comment: 3 pages, no figure
Fast Witness Extraction Using a Decision Oracle
The gist of many (NP-)hard combinatorial problems is to decide whether a
universe of elements contains a witness consisting of elements that
match some prescribed pattern. For some of these problems there are known
advanced algebra-based FPT algorithms which solve the decision problem but do
not return the witness. We investigate techniques for turning such a
YES/NO-decision oracle into an algorithm for extracting a single witness, with
an objective to obtain practical scalability for large values of . By
relying on techniques from combinatorial group testing, we demonstrate that a
witness may be extracted with queries to either a deterministic or
a randomized set inclusion oracle with one-sided probability of error.
Furthermore, we demonstrate through implementation and experiments that the
algebra-based FPT algorithms are practical, in particular in the setting of the
-path problem. Also discussed are engineering issues such as optimizing
finite field arithmetic.Comment: Journal version, 16 pages. Extended abstract presented at ESA'1
The nucleus as a fluid of skyrmions: Energy levels and nucleon properties in the medium
A model of a fluid of skyrmions coupled to a scalar and to the \o meson
mean fields is developed. The central and spin-orbit potentials of a skyrmion
generated by the fields predict correct energy levels in selected closed shell
nuclei. The effect of the meson fields on the properties of skyrmions in nuclei
is investigated.Comment: Latex format, 6 figures, Journal of Physics G, to be publishe
Preferential attachment in the protein network evolution
The Saccharomyces cerevisiae protein-protein interaction map, as well as many
natural and man-made networks, shares the scale-free topology. The preferential
attachment model was suggested as a generic network evolution model that yields
this universal topology. However, it is not clear that the model assumptions
hold for the protein interaction network. Using a cross genome comparison we
show that (a) the older a protein, the better connected it is, and (b) The
number of interactions a protein gains during its evolution is proportional to
its connectivity. Therefore, preferential attachment governs the protein
network evolution. The evolutionary mechanism leading to such preference and
some implications are discussed.Comment: Minor changes per referees requests; to appear in PR
Nonlinear Interferometry via Fock State Projection
We use a photon-number resolving detector to monitor the photon number
distribution of the output of an interferometer, as a function of phase delay.
As inputs we use coherent states with mean photon number up to seven. The
postselection of a specific Fock (photon-number) state effectively induces
high-order optical non-linearities. Following a scheme by Bentley and Boyd
[S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this
effect to demonstrate interference patterns a factor of five smaller than the
Rayleigh limit.Comment: 4 pages, 5 figure
Closed Type Families with Overlapping Equations
Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go be- yond conventional dependent type theory in some respects, and have a subtle metatheory
The wall shear rate distribution for flow in random sphere packings
The wall shear rate distribution P(gamma) is investigated for pressure-driven
Stokes flow through random arrangements of spheres at packing fractions 0.1 <=
phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately
exponential. As phi --> 0.1, P(gamma) picks up additional structure which
corresponds to the flow around isolated spheres, for which an exact result can
be obtained. A simple expression for the mean wall shear rate is presented,
based on a force-balance argument.Comment: 4 pages, 3 figures, 1 table, RevTeX 4; significantly revised with
significantly extended scop
- …