11,354 research outputs found

    Pair creation in transport equations using the equal-time Wigner function

    Full text link
    Based on the equal-time Wigner function for the Klein-Gordon field, we discuss analytically the mechanism of pair creation in a classical electromagnetic field including back-reaction. It is shown that the equations of motion for the Wigner function can be reduced to a variable-frequency oscillator. The pair-creation rate results then from a calculation analogous to barrier penetration in nonrelativistic quantum mechanics. The Wigner function allows one to utilize this treatment for the formulation of an effective transport theory for the back-reaction problem with a pair-creation source term including Bose enhancement.Comment: 19 pages, LaTeX, UFTP 316/199

    Solution of the Bohr hamiltonian for soft triaxial nuclei

    Get PDF
    The Bohr-Mottelson model is solved for a generic soft triaxial nucleus, separating the Bohr hamiltonian exactly and using a number of different model-potentials: a displaced harmonic oscillator in γ\gamma, which is solved with an approximated algebraic technique, and Coulomb/Kratzer, harmonic/Davidson and infinite square well potentials in β\beta, which are solved exactly. In each case we derive analytic expressions for the eigenenergies which are then used to calculate energy spectra. Here we study the chain of osmium isotopes and we compare our results with experimental information and previous calculations.Comment: 13 pages, 9 figure

    Density reorganization in hot nuclei

    Get PDF
    The density profile of a hot nuclear system produced in intermediate energy heavy ion collisions is studied in a microcanonical formulation with a momentum and density dependent finite range interaction. The caloric curve and the density evolution with excitation are calculated for a number of systems for the equilibrium mononuclear configuration; they compare favorably with the recent experimental data. The studied density fluctuations are seen to build up rapidly beyond an excitation energy of 8 MeV/u indicating the instability of the system towards nuclear disassembly. Explicit introduction of deformation in the expansion path of the heated nucleus, however, shows that the system might fragment even earlier. We also explore the effects of the nuclear equation of state and of the mass and isospin asymmetry on the nuclear equilibrium configuration and the relevant experimental observables.Comment: 20 pages, 12 figures, revtex

    Glassy states in lattice models with many coexisting crystalline phases

    Full text link
    We study the emergence of glassy states after a sudden cooling in lattice models with short range interactions and without any a priori quenched disorder. The glassy state emerges whenever the equilibrium model possesses a sufficient number of coexisting crystalline phases at low temperatures, provided the thermodynamic limit be taken before the infinite time limit. This result is obtained through simulations of the time relaxation of the standard Potts model and some exclusion models equipped with a local stochastic dynamics on a square lattice.Comment: 12 pages, 4 figure

    Measurement Theory in Lax-Phillips Formalism

    Full text link
    It is shown that the application of Lax-Phillips scattering theory to quantum mechanics provides a natural framework for the realization of the ideas of the Many-Hilbert-Space theory of Machida and Namiki to describe the development of decoherence in the process of measurement. We show that if the quantum mechanical evolution is pointwise in time, then decoherence occurs only if the Hamiltonian is time-dependent. If the evolution is not pointwise in time (as in Liouville space), then the decoherence may occur even for closed systems. These conclusions apply as well to the general problem of mixing of states.Comment: 14 pages, IASSNS-HEP 93/6

    Consequences of wall stiffness for a beta-soft potential

    Full text link
    Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the introduction of sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.

    Probing nuclear skins and halos with elastic electron scattering

    Full text link
    I investigate the elastic electron scattering off nuclei far from the stability line. The effects of the neutron and proton skins and halos on the differential cross sections are explored. Examples are given for the charge distribution in Sn isotopes and its relation to the neutron skin. The neutron halo in 11^{11}Li and the proton halo in 8^{8}B are also investigated. Particular interest is paid to the inverse scattering problem and its dependence on the experimental precision. These studies are of particular interest for the upcoming electron ion colliders at the GSI and RIKEN facilities.Comment: 27 pages, 9 figures, accepted for publication in J. Phys.
    • …
    corecore