209 research outputs found

    Democratizing Ethical Assessment of Natural Language Generation Models

    Full text link
    Natural language generation models are computer systems that generate coherent language when prompted with a sequence of words as context. Despite their ubiquity and many beneficial applications, language generation models also have the potential to inflict social harms by generating discriminatory language, hateful speech, profane content, and other harmful material. Ethical assessment of these models is therefore critical. But it is also a challenging task, requiring an expertise in several specialized domains, such as computational linguistics and social justice. While significant strides have been made by the research community in this domain, accessibility of such ethical assessments to the wider population is limited due to the high entry barriers. This article introduces a new tool to democratize and standardize ethical assessment of natural language generation models: Tool for Ethical Assessment of Language generation models (TEAL), a component of Credo AI Lens, an open-source assessment framework.Comment: 28th SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2022), August 14-18, 2022, Washington, D

    AI Risk Profiles: A Standards Proposal for Pre-Deployment AI Risk Disclosures

    Full text link
    As AI systems' sophistication and proliferation have increased, awareness of the risks has grown proportionally (Sorkin et al. 2023). In response, calls have grown for stronger emphasis on disclosure and transparency in the AI industry (NTIA 2023; OpenAI 2023b), with proposals ranging from standardizing use of technical disclosures, like model cards (Mitchell et al. 2019), to yet-unspecified licensing regimes (Sindhu 2023). Since the AI value chain is complicated, with actors representing various expertise, perspectives, and values, it is crucial that consumers of a transparency disclosure be able to understand the risks of the AI system the disclosure concerns. In this paper we propose a risk profiling standard which can guide downstream decision-making, including triaging further risk assessment, informing procurement and deployment, and directing regulatory frameworks. The standard is built on our proposed taxonomy of AI risks, which reflects a high-level categorization of the wide variety of risks proposed in the literature. We outline the myriad data sources needed to construct informative Risk Profiles and propose a template-based methodology for collating risk information into a standard, yet flexible, structure. We apply this methodology to a number of prominent AI systems using publicly available information. To conclude, we discuss design decisions for the profiles and future work

    Neural Correlates of Temporal Credit Assignment in the Parietal Lobe

    Get PDF
    Empirical studies of decision making have typically assumed that value learning is governed by time, such that a reward prediction error arising at a specific time triggers temporally-discounted learning for all preceding actions. However, in natural behavior, goals must be acquired through multiple actions, and each action can have different significance for the final outcome. As is recognized in computational research, carrying out multi-step actions requires the use of credit assignment mechanisms that focus learning on specific steps, but little is known about the neural correlates of these mechanisms. To investigate this question we recorded neurons in the monkey lateral intraparietal area (LIP) during a serial decision task where two consecutive eye movement decisions led to a final reward. The underlying decision trees were structured such that the two decisions had different relationships with the final reward, and the optimal strategy was to learn based on the final reward at one of the steps (the “F” step) but ignore changes in this reward at the remaining step (the “I” step). In two distinct contexts, the F step was either the first or the second in the sequence, controlling for effects of temporal discounting. We show that LIP neurons had the strongest value learning and strongest post-decision responses during the transition after the F step regardless of the serial position of this step. Thus, the neurons encode correlates of temporal credit assignment mechanisms that allocate learning to specific steps independently of temporal discounting

    The dynamics of methicillin-resistant Staphylococcus aureusexposure in a hospital model and the potential for environmental intervention

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. METHODS: We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. RESULTS: Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient’s room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient’s room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. CONCLUSIONS: Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene

    The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention

    Full text link
    Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. Methods We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. Results Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient’s room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient’s room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. Conclusions Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.http://deepblue.lib.umich.edu/bitstream/2027.42/112924/1/12879_2013_Article_2936.pd

    Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens

    Full text link
    Abstract Background Fomite mediated transmission can be an important pathway causing significant disease transmission in number of settings such as schools, daycare centers, and long-term care facilities. The importance of these pathways relative to other transmission pathways such as direct person-person or airborne will depend on the characteristics of the particular pathogen and the venue in which transmission occurs. Here we analyze fomite mediated transmission through a comparative analysis across multiple pathogens and venues. Methods We developed and analyzed a compartmental model that explicitly accounts for fomite transmission by including pathogen transfer between hands and surfaces. We consider two sub-types of fomite-mediated transmission: direct fomite (e.g., shedding onto fomites) and hand-fomite (e.g., shedding onto hands and then contacting fomites). We use this model to examine three pathogens with distinct environmental characteristics (influenza, rhinovirus, and norovirus) in four venue types. To parameterize the model for each pathogen we conducted a thorough literature search. Results Based on parameter estimates from the literature the reproductive number ( R 0 R0\mathcal {R}_{0} ) for the fomite route for rhinovirus and norovirus is greater than 1 in nearly all venues considered, suggesting that this route can sustain transmission. For influenza, on the other hand, R 0 R0\mathcal {R}_{0} for the fomite route is smaller suggesting many conditions in which the pathway may not sustain transmission. Additionally, the direct fomite route is more relevant than the hand-fomite route for influenza and rhinovirus, compared to norovirus. The relative importance of the hand-fomite vs. direct fomite route for norovirus is strongly dependent on the fraction of pathogens initially shed to hands. Sensitivity analysis stresses the need for accurate measurements of environmental inactivation rates, transfer efficiencies, and pathogen shedding. Conclusions Fomite-mediated transmission is an important pathway for the three pathogens examined. The effectiveness of environmental interventions differs significantly both by pathogen and venue. While fomite-based interventions may be able to lower R 0 R0\mathcal {R}_{0} for fomites below 1 and interrupt transmission, rhinovirus and norovirus are so infectious ( R 0 > > 1 R0>>1\mathcal {R}_{0}>>1 ) that single environmental interventions are unlikely to interrupt fomite transmission for these pathogens.https://deepblue.lib.umich.edu/bitstream/2027.42/146145/1/12879_2018_Article_3425.pd

    Insistence on sameness relates to increased covariance of gray matter structure in autism spectrum disorder.

    Get PDF
    BACKGROUND: Autism spectrum disorder (ASD) is characterized by atypical development of cortical and subcortical gray matter volume. Subcortical structural changes have been associated with restricted and repetitive behavior (RRB), a core component of ASD. Behavioral studies have identified insistence on sameness (IS) as a separable RRB dimension prominent in high-functioning ASD, though no simple brain-behavior relationship has emerged. Structural covariance, a measure of morphological coupling among brain regions using magnetic resonance imaging (MRI), has proven an informative measure of anatomical relationships in typical development and neurodevelopmental disorders. In this study, we use this measure to characterize the relationship between brain structure and IS. METHODS: We quantified the structural covariance of cortical and subcortical gray matter volume in 55 individuals with high-functioning ASD using 3T MRI. We then related these structural metrics to individual IS scores, as assessed by the Repetitive Behavior Scale-Revised (RBS-R). RESULTS: We found that increased coupling among subcortical regions and between subcortical and cortical regions related to greater IS symptom severity. Most pronounced, the striatum and amygdala participated in a plurality of identified relationships, indicating a central role for these structures in IS symptomatology. These structural associations were specific to IS and did not relate to any of the other RRB subcomponents measured by the RBS-R. CONCLUSIONS: This study indicates that behavioral dimensions in ASD can relate to the coordination of development across multiple brain regions, which might be otherwise obscured using typical brain-behavior correlations. It also expands the structures traditionally related to RRB in ASD and provides neuroanatomical evidence supportive of IS as a separate RRB dimension. TRIAL REGISTRATION: ClinicalTrials.gov NCT01031407

    The Experiment Factory: Standardizing Behavioral Experiments

    Get PDF
    The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (de Leeuw (2015); McDonnell et al. (2012); Mason and Suri (2011); Lange et al. (2015)) have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker (2015); Open Science Collaboration (2015)) highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org) that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms

    The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli from Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador

    Get PDF
    © The Author(s) 2018. Small-scale production poultry operations are increasingly common worldwide. To investigate how these operations influence antimicrobial resistance and mobile genetic elements (MGEs), Escherichia coli isolates were sampled from small-scale production birds (raised in confined spaces with antibiotics in feed), household birds (no movement constraints; fed on scraps), and humans associated with these birds in rural Ecuador (2010-2012). Isolates were screened for genes associated with MGEs as well as phenotypic resistance to 12 antibiotics. Isolates from small-scale production birds had significantly elevated odds of resistance to 7 antibiotics and presence of MGE genes compared with household birds (adjusted odds ratio (OR) range = 2.2-87.9). Isolates from humans associated with small-scale production birds had elevated odds of carrying an integron (adjusted OR = 2.0; 95% confidence interval (CI): 1.06, 3.83) compared with humans associated with household birds, as well as resistance to sulfisoxazole (adjusted OR = 1.9; 95% CI: 1.01, 3.60) and trimethoprim/sulfamethoxazole (adjusted OR = 2.1; 95% CI: 1.13, 3.95). Stratifying by the presence of MGEs revealed antibiotic groups that are explained by biological links to MGEs; in particular, resistance to sulfisoxazole, trimethoprim/sulfamethoxazole, or tetracycline was highest among birds and humans when MGE exposures were present. Small-scale production poultry operations might select for isolates carrying MGEs, contributing to elevated levels of resistance in this setting
    • …
    corecore