
TECHNOLOGY REPORT
published: 26 April 2016

doi: 10.3389/fpsyg.2016.00610

Frontiers in Psychology | www.frontiersin.org 1 April 2016 | Volume 7 | Article 610

Edited by:

Jelte M. Wicherts,

Tilburg University, Netherlands

Reviewed by:

Brian MacWhinney,

Carnegie Mellon University, USA

Fred Hasselman,

Radboud University Nijmegen,

Netherlands

Sylvain Chevallier,

Université de

Versailles-Saint-Quentin-en-Yvelines,

France

*Correspondence:

Vanessa V. Sochat

vsochat@stanford.edu

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 13 March 2016

Accepted: 12 April 2016

Published: 26 April 2016

Citation:

Sochat VV, Eisenberg IW, Enkavi AZ,

Li J, Bissett PG and Poldrack RA

(2016) The Experiment Factory:

Standardizing Behavioral Experiments.

Front. Psychol. 7:610.

doi: 10.3389/fpsyg.2016.00610

The Experiment Factory:
Standardizing Behavioral
Experiments
Vanessa V. Sochat 1, 2*†, Ian W. Eisenberg 2†, A. Zeynep Enkavi 2, Jamie Li 2,

Patrick G. Bissett 2 and Russell A. Poldrack 2

1 Program in Biomedical Informatics, Stanford University, Stanford, CA, USA, 2Department of Psychology, Stanford

University, Stanford, CA USA

The administration of behavioral and experimental paradigms for psychology research is

hindered by lack of a coordinated effort to develop and deploy standardized paradigms.

While several frameworks (Mason and Suri, 2011; McDonnell et al., 2012; de Leeuw,

2015; Lange et al., 2015) have provided infrastructure and methods for individual

research groups to develop paradigms, missing is a coordinated effort to develop

paradigms linked with a system to easily deploy them. This disorganization leads

to redundancy in development, divergent implementations of conceptually identical

tasks, disorganized and error-prone code lacking documentation, and difficulty in

replication. The ongoing reproducibility crisis in psychology and neuroscience research

(Baker, 2015; Open Science Collaboration, 2015) highlights the urgency of this

challenge: reproducible research in behavioral psychology is conditional on deployment

of equivalent experiments. A large, accessible repository of experiments for researchers

to develop collaboratively is most efficiently accomplished through an open source

framework. Here we present the Experiment Factory, an open source framework for the

development and deployment of web-based experiments. The modular infrastructure

includes experiments, virtual machines for local or cloud deployment, and an application

to drive these components and provide developers with functions and tools for further

extension. We release this infrastructure with a deployment (http://www.expfactory.org)

that researchers are currently using to run a set of over 80 standardized web-based

experiments on Amazon Mechanical Turk. By providing open source tools for

both deployment and development, this novel infrastructure holds promise to bring

reproducibility to the administration of experiments, and accelerate scientific progress

by providing a shared community resource of psychological paradigms.

Keywords: web-experiments, behavior, docker, assessment, reproducibility, experiments

1. INTRODUCTION

Experimental paradigms are a common means by which we quantify human behavior. Given
this central role, there would ideally be a coordinated effort to develop and deploy standardized
paradigms. Unfortunately there is no openly available, extensible effort, and thus behavioral
datasets tend to be small, and not directly comparable across studies. The technology available
is an important limiting factor; while several frameworks have been developed for specific steps

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.00610
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.00610&domain=pdf&date_stamp=2016-04-26
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:vsochat@stanford.edu
http://dx.doi.org/10.3389/fpsyg.2016.00610
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00610/abstract
http://loop.frontiersin.org/people/188284/overview
http://loop.frontiersin.org/people/341789/overview
http://loop.frontiersin.org/people/340512/overview
http://loop.frontiersin.org/people/340189/overview
http://loop.frontiersin.org/people/274/overview
http://www.expfactory.org

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

in the experimentation process (e.g., jsPsych de Leeuw, 2015
for experiment creation, Psiturk McDonnell et al., 2012 for
deployment), these tools require expertise with programming
or the command line, and lack an integrated framework.
Additionally, there is currently no large, open repository of
paradigms that can serve as a resource and standard for the
field. Without such a resource, individual labs must either spend
unnecessary time coding tasks, or pay for commercial products
that provide a battery of psychological assessments. Behavioral
science can benefit from a more concentrated and conscious
effort to adopt modern technology, including instant online
access to deploying surveys (e.g., www.surveymonkey.com, www.
qualtrics.com), integration with social media (e.g., Facebook,
Twitter), and a general movement toward a fast, broad collection
of data (Mason and Suri, 2011).

With the explosion of experimental tools and behavioral
paradigms to investigate mental function, there is a need for
standardization and harmonization across the field. Historically,
behavioral experimentation in psychology has relied upon a
small number of libraries and software for the generation of
behavioral tasks: E-Prime (Schneider et al., 2012), Psych Toolbox
(Brainard, 1997; Matlab), psychopy (Peirce, 2007; Python),
jsPsych (de Leeuw, 2015; JavaScript). Within this current system,
sharing of code is infrequent, documentation tends to be sparse,
and formal testing is almost nonexistent. The detriments to the
research process are extensive. First, independent development of
standard paradigms by multiple individuals leads to redundancy
of effort and increases the probability of coding and conceptual
errors in task design. Even when labs share their code there
is the potential for propagation of error across labs if the
benefactors do not rigorously vet the paradigms. Second, lack
of an open repository of paradigms slows the establishment of
standardized behavioral measures; while certain paradigms may
be popular in subsections of psychology, they may be wholly
unknown in others. By the same token, lack of open sharing
slows the adoption and vetting of new paradigms, since their
use either requires independent development or acquiring them
from the original lab, both of which delay reproduction and
extension of the original work. Finally, lack of standardization
complicates interpretation of paradigms by potentially conflating
theoretically meaningful differences in task design with accidents
of implementation.

A promising trend to address these issues is the growth of
browser-based experimentation, such that behavioral paradigms
are delivered online or offline through a web browser. While
some toolboxes are limited to running with specific software
(Brainard, 1997; Schneider et al., 2012), delivery of experiments
over the web using platforms like Amazon Mechanical Turk
have become increasingly popular (Stewart et al., 2015), with
results consistent with in-laboratory settings (Woods et al.,
2015). For example, the Many Labs study (Klein et al., 2014)
successfully replicated 10 out of 13 selected classical paradigms
using 36 independent samples to show that effects are robust
across samples and settings. The use of the web necessitates a
move to standard web technologies including JavaScript, HTML,
and CSS. The primary benefit of web-based experimentation
is that experiments can be delivered across platforms (e.g.,

computers, mobile phones, tablets, fMRI projected screens), and
environments (controlled and uncontrolled settings). Companies
have noticed this trend, and there are a number of pay-
for-service products available (e.g., http://www.millisecond.com
offers “Implicit,” and http://www.nightingaleapp.com offers an
app for data collection in organizations). While these solutions
are ideal for the controlled collection, organization, and delivery
of primarily survey-based data, these products are not ideal for
researchers who generally desire the transparency and ultimate
control over their experiments afforded by the use of open source
software. Additionally, the scope of tasks that can be deployed is
limited. The ideal would be to have published paradigms, surveys,
and games that have precise response latency measurement,
along with auditory and visual stimuli. The ideal would be for
this public resource to be open, flexible, and under the control of
the researchers that use it, which is not the case for commercial
solutions. The development of an open-source equivalent, on the
other hand, would meet these requirements.

A wide range of standard infrastructures are in development
to help with this task. Just Another Tool for Online Studies
(JATOS) provides infrastructure to set up a local or server-based
set of JavaScript experiments with a corresponding database, but
does not address the issue of standardizing or re-using paradigms
(Lange et al., 2015). The Project Implicit Framework (PIP)
(http://www.peoplescience.org) is a modular framework that also
deploys JavaScript experiments, but requires significant expertise
to develop and set up components of the application. Psiturk
(McDonnell et al., 2012) is a Python-based web framework
(based on the Flask micro-framework) that researchers can use
to develop experiments and deploy onAmazonMechanical Turk,
but is limited to that implementation, and requires researchers to
develop their own paradigms.

A commercial solution, E-Prime (Schneider et al., 2012)
must be mentioned in that it has been well adopted into the
community. While E-Prime offers equivalent fine-tuned control
of stimuli presentation, the requirement of a USB license to
run it, inability to serve experiments online (e.g., on Amazon
Mechanical Turk), and substantial learning to create experiments
(MacWhinney et al., 2001) make it ill-suited for widespread and
easy deployment of experimental paradigms. MacWhinney et al.
(2001) have the System for Teaching Experimental Psychology
(STEP) that is intended to maximize the use of E-Prime
for both teaching and experimental purposes. STEP includes
documentation and E-Prime scripts for a variety of classic and
commonly used paradigms. However, because it uses E-Prime, it
inherits the problems of using E-Prime, so it is also ill-suited for
widespread adoption and open collaboration.

Finally, Tatool is a web-based tool for researchers to create
and run experiments, offering modern and accessible experiment
generation and analysis. While Tatool is easy to use and a
great contribution to open-source experiment technology, it does
not provide standardization to the development of experiments,
sharing and development of a common resource, or integration
with existing deployment options (e.g., Psiturk; Makin, 2016).
Here we present the Experiment Factory, an open source
framework for the development and deployment of web-based
experiments. Central to the Experiment Factory is a collection of

Frontiers in Psychology | www.frontiersin.org 2 April 2016 | Volume 7 | Article 610

www.surveymonkey.com
www.qualtrics.com
www.qualtrics.com
http://www.millisecond.com
http://www.nightingaleapp.com
http://www.peoplescience.org
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

over 80 standardized paradigms, which are immediately available
for use, and can be easily extended and improved upon through
open-source collaboration.

2. THE EXPERIMENT FACTORY

An essential and often overlooked feature of research workflow
is the distinction between developer and user. A developer
is a researcher interested in creating experimental paradigms
and infrastructure, while a user simply wants to use the
paradigms. While some researchers aim to dig deep into the
code for an application, others simply want to use it, and
a successful infrastructure must serve both. Toward this aim,
the Experiment Factory employs a modular strategy, providing
separate components (Github repositories) for experiments,
surveys, battery, and deployments (see Section 4, The Experiment
Factory Infrastructure), and allows researchers to deploy
experiments into current tools that researchers already find useful
(e.g., Psiturk, see Table 3 for Glossary of terms), and under
different likely scenarios like not having access to an internet
connection, or needing to save data to a private database. First we
will outline some use case scenarios to describe the motivation
behind this work, followed by an outline of the infrastructure in
more detail. We have made available a “getting started” guide
to better familiarize users of the framework (http://expfactory.
readthedocs.org/en/latest/getting-started.html).

3. THE EXPERIMENT FACTORY USE
CASES

3.1. Deployment of Experiments
The Experiment Factory aims to offer both flexibility and
structure. A researcher has complete control over the deployment
environment (local or cloud), along with the infrastructure used
for the deployment (see Section 4, The Experiment Factory
Infrastructure). Under any circumstance, the researcher has
complete control over the set of experiments that are selected,
and the resulting data are provided in several output formats. For
this manuscript, we will walk through several use cases. When
we refer to a module such as "experiments," we are referring to
a Github repo, and more information is available about these
components in Section 4.

3.1.1. Local Deployment of Experiments
The most basic use case is when a researcher wants to run
participants locally through the paradigms already included in
the experiments module. This approach is easily accomplished
using the expfactory command line tool (Section 4.1 The
Experiment Factory Software). Using the tool, a researcher
can, in one line of code, select experiments, define a
participant unique ID, and bring up a web interface to
deploy a set of connected experiments called a “battery” (e.g.,
“expfactory --run --experiments stroop,nback --subid UID001”).
In the case that the user wants to save a static folder to run
later, the argument “--generate” can be used in a similar fashion.
While the default behavior is to use the latest experiments and
battery templates from the repositories, a researcher can ensure

that experiments and battery code remains constant by saving
(cloning) the repositories to a local machine, and providing the
paths to the folders as arguments to the tool (see the docs at
expfactory.readthedocs.org for details). The data are downloaded
to the local machine directly in the browser after the experiment
completes, and named according to the participant unique ID.

3.1.2. Deployment of Experiments Using Psiturk
The Psiturk infrastructure is a well-developed platform for
deploying experiments on Mechanical Turk. Due to its
substantial user base and documentation, it was imperative
that our experiments be easily deployable to Psiturk. Using the
expfactory command line tool without any arguments, a user
can open up a web interface to choose experiments, a database
specification, and a deployment. After selection of these variables,
either a folder or file to run a virtual machine is provided to
the user. This functionality is also possible using the command
line tool with “expfactory --generate --experiments stroop,nback
--folder /home/output.”

3.1.3. Local Modification of Experiment or Battery
Researchers may want to use the experiments included in
the experiments module as a “base paradigm,” but make
modifications for their own purposes (e.g., change the stimuli
images, increase the trial length). Similarly, researchers may
want to supplement the paradigms available with their own
experiments. If a set of experiments have already been
downloaded as a set of folders, modifying a paradigm simply
requires changing the files in a specific experiment folder. While
this currently requires some JavaScript coding knowledge, we
plan to allow modification of a restricted set of experiment
variables through variables in the configuration file of an
experiment (Table 1) in the future.

3.1.4. Development of Experiments and Infrastructure
The Experiment Factory uses an open source development
strategy, meaning that all code is publicly available on Github
(http://www.github.com/expfactory), and contributions are
made to any of the code bases via forking of repositories and
pull requests. Full documentation about this process is available
(http://expfactory.readthedocs.org/en/latest/development.html).
The code base has been developed and tested on Linux (Ubuntu)
and Mac OS.

3.1.5. Experiment Development
Contributing a new experiment constitutes adding a new
folder to the experiments repository that meets the minimal
requirements for expfactory (i.e., including a JavaScript file to
run the experiment, and a configuration file to specify meta-
data). Additional script and style files, along with images,
sound, or other files necessary for deployment, are optional. We
provide an experiment template for researchers to start with,
and a recommended strategy is to copy and make modifications
to a similar experiment that already exists. Development of
an experiment means some familiarity with JavaScript and
HTML/CSS, and ability to collaboratively work on Github. We
provide both best practices and detailed descriptions about
the required variables for the configuration file (Table 1). To

Frontiers in Psychology | www.frontiersin.org 3 April 2016 | Volume 7 | Article 610

http://expfactory.readthedocs.org/en/latest/getting-started.html
http://expfactory.readthedocs.org/en/latest/getting-started.html
expfactory.readthedocs.org
http://www.github.com/expfactory
http://expfactory.readthedocs.org/en/latest/development.html
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

TABLE 1 | The fields required in the standard config.jsonž for an Experiment Factory Experiment.

Field name Requirement level Rationale Example

name Not required, warning Descriptive label of experiment Antisaccade

run Required, not valid without Scripts required for the experiment to run experiment.js style.css

exp_id Required, not valid without Unique identifier Antisaccade

cognitive_atlas_concept_id Not required, warning Mapping of experiment to cognitive concepts it measures trm_4b1968619b00b

contributors Not required Credit and source of help Ian Eisenberg Vanessa Sochat Zeynep Enkavi

time Required, not valid without Run time in minutes 8

experiment_variables Not required Variables for allocation of credit or reward reaction_time

reference Not required, warning Full documentation of paradigm doi:10.1006/cogp.1999.0734

notes Not required Additional information to capture Should not wear glasses

publish Required, not valid without Ready for deployment True

template Required, not valid without Experiment library base jspsych

The definition of files and a template are essential to validate the function of the experiments. The examples for each field above are limited and not in JSON, full config.json are available

for inspection in the experiment folders (https://github.com/expfactory/expfactory-experiments).

test experiments, the user has several options. The Experiment
Factory software command line tool can be run from within
any experiment folder to open up a web browser to test a single
experiment manually with “expfactory --preview,” to test a single
experiment with an experiment robot using “expfactory --test,” or
to validate the configuration file with “expfactory --validate.” See
full documentation at http://expfactory.readthedocs.org.

3.1.6. Documentation and Infrastructure

Development
Infrastructure and methods are useless without proper
documentation. The Experiment Factory uses the sphinx
documentation tool, served with the Experiment Factory
Github repository, meaning that it is built automatically when
the code base is updated. This documentation standard uses
restructured text syntax (rst) (http://docutils.sourceforge.net/
rst.html). A set of pages have been written to supplement
the functions that the module provides, and we also provide
documentation for how to contribute to documentation
(http://expfactory.readthedocs.org/en/latest/development.html#
contributing-to-this-documentation). The Experiment Factory
code is licensed under the MIT open source license, which is
a highly permissive license that places few limits upon reuse.
This ensures that the code will be usable by the greatest number
of researchers, in both academia and industry. We welcome
and encourage contributions for any of the Experiment Factory
components from the larger community.

Complete tutorials and further details are provided in our
development documentation (http://expfactory.readthedocs.org/
en/latest/development.html).

4. THE EXPERIMENT FACTORY
INFRASTRUCTURE

This section is intended for more technical readers and those
interested in development of the Experiment Factory modules,
and we provide a Glossary of terms (Table 3) to explain more
technical jargon. Themodular strategy of the Experiment Factory
infrastructure means providing separate Github repositories

for experiments, skeletons for a sequence of experiments (a
“battery” of experiments), and deployments. The Experiment
Factory aims to be agnostic when it comes to deployment,
and to provide support for the current infrastructures that
researchers find useful to deploy their experiments. For example,
experiments can be easily deployed into a folder structure
to plug in to Psiturk, either locally on a virtual machine,
or served locally to study participants without an internet
connection. These static components are separate from the
software that drives integration of the components, and all
components and software are completely open source (Github,
RRID:SCR_002630), allowing for collaborative specialization. A
researcher interested in developing an experiment need only add
a new paradigm to the experiments repository, and it will be
available to all applications that use the Experiment Factory.
A researcher primarily interested in further developing the
software can do so without needing to touch static components.
Currently the entire system is available for deployment by any
researcher, either locally or using a cloud server; ultimately, we
also hope to provide a hosted version as a service open to all
researchers. An overview of the infrastructure is included in
Figure 1.

4.1. Experiment Factory Software
The controller of the Experiment Factory is the Experiment
Factory Python software (https://github.com/expfactory/
expfactory-python) that provides functions for working with
components, testing and validating experiments, and generating
the final battery output based on the users specifications. For
example, after installing this tool, a researcher can, in one line,
specify experiments and an optional subject unique id, and a
browser opens with the rendered battery. Behind this simple
functionality, the software is obtaining experiment and battery
files from Github, validating the experiments, and parsing
configuration files to render the users selected experiments into
the correct HTML syntax. The finished HTML syntax, along
with experiment code and static files, is saved in a temporary
directory, and a web server is opened to run the experiments as a
sequence.

Frontiers in Psychology | www.frontiersin.org 4 April 2016 | Volume 7 | Article 610

https://github.com/expfactory/expfactory-experiments
http://expfactory.readthedocs.org
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://expfactory.readthedocs.org/en/latest/development.html#contributing-to-this-documentation
http://expfactory.readthedocs.org/en/latest/development.html#contributing-to-this-documentation
http://expfactory.readthedocs.org/en/latest/development.html
http://expfactory.readthedocs.org/en/latest/development.html
https://scicrunch.org/resolver/RRID:SCR_002630
https://github.com/expfactory/expfactory-python
https://github.com/expfactory/expfactory-python
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

FIGURE 1 | The experiment factory core: Experiments, a battery

skeleton, and the software are openly available on Github. Installation of

the Experiment Factory tool allows a researcher to run a sequence of

experiments on the fly (right) or to generate a local folder or virtual machine to

deploy experiments to Amazon Mechanical Turk using Psiturk (left).

The tool is also useful to developers in that any function in
the software can be used in an external application. By way of
being a Python Flask application (see Table 3 for TermGlossary),
running the executable also provides a RESTful API to serve
experiment meta-data, which can be deployed in a local or cloud
server environment. The application is easily installed with a
package manager (https://pypi.python.org/pypi/expfactory), and
developers can collaborate on this software to develop additional
functions for use with the entire family of Experiment Factory
components.

4.2. Experiment Factory Experiments and
Surveys
The Experiment Factory Experiments (https://github.com/
expfactory/expfactory-experiments) and Surveys (https://
github.com/expfactory/expfactory-surveys) are the core of the
infrastructure: at the time of this publication there are more than
80 coded experiments and surveys available for deployment.
Each experiment is a single folder in the expfactory-experiments
Github repository that contains a data structure (config.json)
file with a standard set of keyvalue relationships that provide

meta-data on the experiment, and allow for its deployment.
Table 1 provides an overview of fields, requirements, and
examples, each of which is checked before an experiment is
considered valid. For example, the definition of files necessary
to run the experiment is essential for the expfactory-python tool
to validate and deploy the experiments, and the definition of
variables makes them available to the higher level applications.
Each experiment is given a unique identifier, the “exp_id”
variable, that coincides with the folder name in the Github
repository. The boolean field “publish” makes it possible to
quickly disable deployment of a particular experiment, and the
fields “reference,” and “contributors” are important to allocate
credit to developers. Finally, fields related to the Cognitive
Atlas (Poldrack et al., 2011) allow for a common place to
document details and references for the experiment, and define
an experimental paradigm in an ontology that makes assertions
about the cognitive concepts measured by the task. This means
that a comparison can be made between tasks with regard to
the processes or phenomena that are measured (e.g., finding all
tasks that are thought to measure the construct of “response
inhibition”). The “template” field specifies the library (e.g.,
JavaScript functions) that the experiment is coded in, such that
the deployment template will be customized for the library.
Although the initial release includes experiments coded using
jsPsych, a Javascript library that simplifies experiment creation,
the modular framework and specification of this template
means that the infrastructure is ready to be extended to any
web-based technology. This is extremely important to allow for
development of experiments using the most up-to-date web-
based technologies. Similar to experiments, each survey is a single
folder in the expfactory-surveys Github repository. Surveys are
fully specified by two files: a data structure (config.json) file
identical to the one used for experiments and a TSV (survey.tsv)
file which specifies the questions, responses and scoring of the
survey.

4.3. Experiment Factory Battery
The Experiment Factory Battery (https://github.com/expfactory/
expfactory-battery) is a simple skeleton into which Experiment
Factory experiments can be deployed as a cohesive set of
experiments, called a “battery.” The battery comes with a
set of standard JavaScript and stylesheets common across the
templates (e.g., jsPsych), meaning that code that is consistently
re-used across paradigms can be added to this repository.
The design of the battery allows immediate deployment to
multiple infrastructures, including Psiturk (locally or via a virtual
machine), to a local machine to run on the fly, or a Django
(RRID:SCR_012855) application that can be served locally or on
a server (expfactory-docker). This Django application drives the
(www.expfactory.org) interface.

4.4. Experiment Factory Docker
One of the main goals of the Experiment Factory is to
provide an ability to deploy experiments and collect data
without any knowledge of programming, databases, or a
command line. Under this requirement, download of a
command line application is one step too many, and for this
reason we developed a container-based application running

Frontiers in Psychology | www.frontiersin.org 5 April 2016 | Volume 7 | Article 610

https://pypi.python.org/pypi/expfactory
https://github.com/expfactory/expfactory-experiments
https://github.com/expfactory/expfactory-experiments
https://github.com/expfactory/expfactory-surveys
https://github.com/expfactory/expfactory-surveys
https://github.com/expfactory/expfactory-battery
https://github.com/expfactory/expfactory-battery
https://scicrunch.org/resolver/RRID:SCR_012855
www.expfactory.org
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

at expfactory.org. The Experiment Factory Docker is a set
of containers that serve a Django application that can be
run locally or on a server to provide a login interface for
labs to run experiments locally, or from the cloud. The
application supports both http and https (secure connections).
The application is also configured to deploy experiments
to Amazon Mechanical Turk. The ease of deployment is
thanks to Docker, an emerging container-based architecture
that allows for development and deployment of applications
in Linux containers (http://www.docker.com). Docker Compose
(http://docs.docker.com/compose) is a controller for running
multi-container applications such as the Experiment Factory,
which uses separate containers for a nginx web server (nginx-
proxy), a postgresql database (postgres), a Celery job manager
worker to run time-intensive jobs (worker), a database for
the jobs (redis), and the core application (expfactory), and
protocol (uwsgi) for serving the application. An overview of
these containers, along with the images on the Docker Hub,
are provided in Table 2 and Figure 2, and a summary of
terms are provided in a glossary (Table 3). For a more secure
deployment (e.g., expfactory.org), it is recommended to link the
application to a separate database with an encrypted connection
over running the postgres container on the same server. Django
(https://www.djangoproject.com/) is a Python-based framework
that comes with a strong user base, well-developed plugins
for authentication, security, and a backend database, and if
desired, the Django application could be run independently from
Docker.

4.5. Experiment Factory VM
Deployment of a battery to a virtual machine, whether locally or
to the cloud, is made possible by the expfactory-vm repository.
This repository contains Vagrantfiles that can be used with
the Vagrant software (http://www.vagrantup.com) to run a
local Virtual Machine, or one deployed via Amazon Web
Services. The files can be used “as is” to deploy a battery
with all experiments, or generated through the expfactory-
python executable to allow a user to define a custom set of
experiments.

5. DESIGN AND IMPLEMENTATION
CHOICES

5.1. Modular Framework for Open Science
The choice to use Github, and to separate the Experiment
Factory into its underlying components (experiments, battery,
docker, documentation, and vm) was a specific choice to allow
specialization and collaboration in development. Github offers
version control, management of code, and collaboration between
teams, along with features such as reporting issues, discussing
changes, and managing documentation. All versions of code are
archived, and multiple features can be worked on simultaneously
by any researcher with an internet connection. Github also
provides Continuous Integration, or automatic testing of code,
both for the experiments and expfactory-python, discussed next.

5.2. Software Testing for the Experiment
Factory
An essential component of software development is continuous
testing of all functions whenever changes are made to the
software in the case that a change breaks an essential

TABLE 2 | Docker Containers utilized in expfactory-docker to run the

www.expfactory.org.

Container name Purpose Image

expfactorydocker_uwsgi_1 Django application, and

uwsgi protocol for serving it

expfactory

expfactorydocker_db_1 Postgresql database for

Django application

and storing results

postgres

expfactorydocker_nginx_1 “Engine X” web server nginx

expfactorydocker_worker_1 Celery worker for running tasks expfactory

expfactory_redis_1 Redis database for tasks, serialized

as JSON

redis

The container images are downloaded from the Docker hub. The container image

“expfactory” corresponds to the expfactory-docker repository, and is built automatically

from this source. For a more substantial deployment, the database can be external to the

instance (e.g., Amazon RDS) with an encrypted connection.

FIGURE 2 | Docker containers: Expfactory-docker includes the main application container (expfactory), a database for storing application data

(postgres), a job queue (redis) and worker (Celery) for running computationally intensive tasks, and a web server (nginx) to serve the application to the

web.

Frontiers in Psychology | www.frontiersin.org 6 April 2016 | Volume 7 | Article 610

http://www.docker.com
http://docs.docker.com/compose
https://www.djangoproject.com/
http://www.vagrantup.com
www.expfactory.org
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

TABLE 3 | Glossary of terms for technical jargon, software, and tool

references.

Term Definition

Amazon Mechanical

Turk (MTurk)

A platform provided by Amazon Web Services to allow

individuals (Requesters) to deploy “human intelligence

tasks,” or computer-based tasks that are difficult for

computers, for other people to complete

Battery A set of experimental paradigms presented in sequence

to a study participant

Celery A distributed task queue to allow for scheduling of

function executions on a server

Continuous

Integration

The continuous testing of functions in code whenever a

change is made to ensure functionality does not break

with changes

Cognitive Atlas A collaborative knowledge base of ideas (e.g., cognitive

concepts and experimental paradigms) in cognitive

science

Docker A container-based infrastructure to package an entire

software environment (code, system libraries, files) for

consistent deployment on different computers

Docker Compose A tool for specification of how different Docker

containers work together to build an application with

multiple containers

Django A Python-based web framework that makes it easy to

extend Python-based functions into the web browser

Flask A Python-based micro-framework with less stringent

requirements than Django to extend Python-based

functions into a web browser

jshint A code analysis tool to check static (not running)

JavaScript code for common errors

jsPsych A JavaScript library for creating and running behavioral

experiments

Psiturk A Flask application to deploy web-based experiments to

Amazon Mechanical Turk

Selenium A tool to allow for programmatic control of web browsers

Sphinx A documentation generation language for Python

Redis An open source data structure store that can easily

handle storage of different data structures for use with

other applications

uWSGI A tool to easily deploy web applications, including load

balancing, process and task management, and

monitoring

functionality. This task, called Continuous Integration, can be
done automatically when new changes are proposed to code
on Github with services like CircleCI (https://circleci.com/)
and Travis (https://travis-ci.com/). The base software to run
the Experiment Factory (expfactory-python) is consistently
tested in this fashion, however a significant challenge in the
development of this infrastructure was ensuring functionality
of the experiments themselves. An error in an experiment
at run-time would end a battery, and must be avoided
at all costs. Toward this goal, the Experiment Factory has
several strategies for testing experiment code in a Continuous
Integration environment. First, testing of experiments includes
using jshint, a JavaScript quality tool, to parse experiment code
files for static errors. The validation of experiments config.json
data structures also occurs in the Continuous Integration

environment, as does testing the experiments at run-time.
This is made possible by using an automated web browser,
selenium (http://www.seleniumhq.org), controlled by python
functions from expfactory-python that respond to the stimuli,
akin to running an experiment robot. When experiments are
modified, the experiment robot is run over these changed
experiments to ensure no run-time errors, triggering an error
to fail the Continuous Integration tests if any errors are found.
During this process, developers can discuss changes and issues
using the standard forums for reporting issues and discussing
development that are provided by Github. This collaborative
coding environment has been an essential component for our
group to develop, pilot, and discuss the application. Using version
control was an essential factor for the Experiment Factory to
follow the vision of reproducible science.

5.3. The Cognitive Atlas
The Cognitive Atlas (Poldrack et al., 2011) is an ontology
that represents current knowledge about cognitive science.
Integration of standard terms to describe the tasks, and
consequently, the cognitive concepts that are measured by them,
allows for researchers to map all experiments into a common
space, and use a common language to describe the behavior
and phenomena that are being measured. This means that, for
example, a researcher can quickly find experiments that are
asserted to measure “risk seeking,” and such a feature is not
only important for definition of these experiments, but also for
meta-analysis and reproducible science. The expfactory.github.io
experiment portal, along with documentation and testing of
experiments, offers a view to browse experiments based on
the cognitive concepts that are measured, as defined in the
Cognitive Atlas. Mapping experiments to the Cognitive Atlas and
making assertions about the cognitive concepts measured by the
experiments is powerful in that it allows researchers to select
paradigms based on the specific cognitive functions that they are
thought to measure.

6. DISCUSSION

We have developed the Experiment Factory with a vision
of open, collaborative science. The modular application is
flexible to be used by both developers and researchers without
development experience, and structured so that experiments
must follow guidelines that will make them extendable to
multiple frameworks. We have integrated the Cognitive Atlas as
a way to provide structure in making assertions about what the
experiments measure — any experiment tagged with a unique
identifier in the Cognitive Atlas can immediately be compared
to other experiments on the level of the cognitive concepts.
While we are optimistic about our approach, there are several
limitations.

6.1. Limitations
6.1.1. Software Versioning
A key challenge with any kind of deployment of this nature
is software versioning. For example, the current experiments
and battery are up to date with the most recent version of

Frontiers in Psychology | www.frontiersin.org 7 April 2016 | Volume 7 | Article 610

https://circleci.com/
https://travis-ci.com/
http://www.seleniumhq.org
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

the JsPsych library, and upgrading this software would require
developers to update current experiments. Thus, a standard in
software development is to instill that care is taken to make
available different versions of the software to support legacy
implementations. Significant new releases of dependencies can
be integrated when the developer community decides they
are needed, and these same developers take responsibility for
ensuring proper function of components. This is the rationale for
Continuous Integration to run tests of the function of software,
which has been implemented and provided by way of CircleCI
(www.circleci.com) integration with Github.

6.1.2. Ontology Development
The Cognitive Atlas may not contain every experimental
paradigm that would be desired, and so it might be required for
a researcher to add a new experiment, extend documentation on
an already defined experiment, or better develop the assertions
about the cognitive concepts that the task measures. Ontology
development is an ongoing process.

6.1.3. Operating Systems and Browsers Supported
We have tested the experiments fully on Chrome and Firefox
browsers running on Linux and Mac OS systems. While we plan
to develop a desktop application that will have cross platform
support (i.e., includingWindows), this desktop application is not
yet available. In the meantime we encourage users to use the tools
on Linux and Mac OS, in Chrome or Firefox, and to use a virtual
machine for support on Windows systems.

6.1.4. Community Contributions
A significant challenge with the release of any new technology
is adoption by the community. While we cannot ensure that
researchers will be motivated to contribute new experiments,
we are optimistic that The Experiment Factory will be well
utilized. We have built the Experiment Factory from the ground
up for ease and accessibility for both users and developers.
Additionally, several groups have started using our software,
contributing experiments, or expressing interest prior to any
efforts to publicize the work.

A second point of concern is the quality of the
implementations. We have developed the initial experiment set
based on careful reading of published paradigms in the literature,
along with significant feedback both from other groups of
researchers and pilot studies. While a complete review of proper
experimental design (e.g., MacWhinney et al., 2001) is outside of
the scope of this technical paper, we have provided equivalent
“best practices” for the development of a new paradigm to our
documentation, and are optimistic that having an open source
framework will ensure many eyes pass over the experiments,
minimizing errors in implementations.

6.1.5. Future Development
The goal of the team of developers behind the Experiment
Factory is to keep the set of tools and experiments modern.
We believe that the same technology available and used in
industry should be extended to researchers, and for this
reason have chosen our current approach that uses modern

technologies such as Docker, Amazon Mechanical Turk, and

Amazon Web Services. Coinciding with this goal, we see a
potential opportunity to deploy experiments via social networks
such as Facebook, and have plans to develop this ability. We
also see great potential in the development of experiments
beyond the jsPsych framework, and have plans to do this.
Currently we are developing a “games” extension to develop
and deploy fun, interactive paradigms. Given the open nature of
this work, we encourage and invite all researchers to join in the
development of experiments, battery template, and deployment
infrastructures.

7. CONCLUSION

The Experiment Factory is a modular infrastructure that applies
a collaborative, open source framework to the development and
deployment of psychology experiments. We are pleased to offer
this as a resource for the larger community, and excited to further
the development toward the needs of our users toward a vision of
reproducible science.

AUTHOR CONTRIBUTIONS

The Experiment Factory was conceived by authors VS and
IE. The infrastructure idea was originated by VS with
later contributions from IE. Experiments were developed
by authors IE, AE, JL and tested by authors PB, IE,
JL, and AE with contributions to the design from author
VS. The Experiment Factory Battery skeleton was generated
by authors IE and VS with minor extensions by AE.
The Experiment Factory code base (python,vm,docker,surveys)
was implemented by author VS. Manuscript textual content
was prepared by authors VS, IE, and RP, with substantial
feedback from PB and AE. Figures and manuscript formatting
were produced by author VS. All authors approved of the
final manuscript and are accountable for all aspects of
the work.

FUNDING

This work was supported by the National Institutes of
Health (NIH) Science of Behavior Change Common Fund
Program through an award administered by the National
Institute for Drug Abuse (UH2DA041713). VS is supported
by a William R. Hewlett Stanford Graduate Fellowship
and a National Science Foundation Fellowship. PB was

supported by the National Institute of Drug Abuse of the
National Institutes of Health under award number F32
DA041773.

ACKNOWLEDGMENTS

We would like to thank the entire Poldrack Lab for significant
feedback on the Experiment Factory during development, Josh
de Leeuw for jsPsych, and Mary Ann Green and Sun Jung Kim
for testing of experiments.

Frontiers in Psychology | www.frontiersin.org 8 April 2016 | Volume 7 | Article 610

www.circleci.com
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Sochat et al. The Experiment Factory: Standardizing Behavioral Experiments

REFERENCES

Baker, M. (2015). Over half of psychology studies fail reproducibility test. Nat.

News. doi: 10.1038/nature.2015.18248. Available online at: http://www.nature.

com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:

10.1163/156856897X00357

de Leeuw, J. R. (2015). jspsych: a JavaScript library for creating behavioral

experiments in a web browser. Behav. Res. Methods 47, 1–12. doi:

10.3758/s13428-014-0458-y

Klein, R. A., Ratliff, K. A., Vianello, M., R. B. A. Jr., Bahník, V., Bernstein, M. J.,

Bocian, K., et al. (2014). Investigating variation in replicability. Soc. Psychol. 45,

142–152. doi: 10.1027/1864-9335/a000178

Lange, K., Kühn, S., and Filevich, E. (2015). “Just another tool for online studies”

(JATOS): an easy solution for setup andmanagement of web servers supporting

online studies. PLoS ONE 10:e0130834. doi: 10.1371/journal.pone.01

30834

MacWhinney, B., St. James, J., Schunn, C., Li, P., and Schneider, W. (2001).

STEP—A system for teaching experimental psychology using E-Prime.

Behav. Res. Methods Instrum. Comput. 33, 287–296. doi: 10.3758/BF031

95379

Makin, S. (2016). Brain training: memory games. Nature 531, S10–S11. doi:

10.1038/531S10a

Mason, W., and Suri, S. (2011). Conducting behavioral research on amazons

mechanical turk. Behav. Res. 44, 1–23. doi: 10.3758/s13428-011-0124-6

McDonnell, J. V., Martin, J. B., Markant, D. B., Coenen, A., Rich, A. S., and

Gureckis, T. M. (2012). Psiturk (Version 1.02)[Software]. New York, NY: New

York University.

Open Science Collaboration (2015). PSYCHOLOGY. estimating the

reproducibility of psychological science. Science 349:aac4716. doi:

10.1126/science.aac4716

Peirce, J. W. (2007). PsychoPy—psychophysics software in python. J. Neurosci.

Methods 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017

Poldrack, R. A., Kittur, A., Kalar, D., Miller, E., Seppa, C., Gil, Y., et al. (2011).

The cognitive atlas: toward a knowledge foundation for cognitive neuroscience.

Front. Neuroinform. 5:17. doi: 10.3389/fninf.2011.00017

Schneider, W., Eschman, A., and Zuccolotto, A. (2012). E-Prime User’s Guide.

Pittsburgh, PA: Psychology Software Tools, Inc.

Stewart, N., Ungemach, C., Harris, A. J. L., Bartels, D. M., Newell, B. R., Paolacci,

G., et al. (2015). The average laboratory samples a population of 7,300 Amazon

Mechanical Turk workers. Judgm. Decis. Mak. 10, 479–491.

Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., and Spence, C. (2015).

Conducting perception research over the internet: a tutorial review. PeerJ

3:e1058. doi: 10.7717/peerj.1058

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Sochat, Eisenberg, Enkavi, Li, Bissett and Poldrack. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 9 April 2016 | Volume 7 | Article 610

http://www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248
http://www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	The Experiment Factory: Standardizing Behavioral Experiments
	1. Introduction
	2. The Experiment Factory
	3. The Experiment Factory Use Cases
	3.1. Deployment of Experiments
	3.1.1. Local Deployment of Experiments
	3.1.2. Deployment of Experiments Using Psiturk
	3.1.3. Local Modification of Experiment or Battery
	3.1.4. Development of Experiments and Infrastructure
	3.1.5. Experiment Development
	3.1.6. Documentation and Infrastructure Development

	4. The Experiment Factory Infrastructure
	4.1. Experiment Factory Software
	4.2. Experiment Factory Experiments and Surveys
	4.3. Experiment Factory Battery
	4.4. Experiment Factory Docker
	4.5. Experiment Factory VM

	5. Design and Implementation Choices
	5.1. Modular Framework for Open Science
	5.2. Software Testing for the Experiment Factory
	5.3. The Cognitive Atlas

	6. Discussion
	6.1. Limitations
	6.1.1. Software Versioning
	6.1.2. Ontology Development
	6.1.3. Operating Systems and Browsers Supported
	6.1.4. Community Contributions
	6.1.5. Future Development

	7. Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

