257 research outputs found

    Introduction: Special issue on gender and sexuality studies

    Get PDF
    The articles included in this special issue represent a selection of the thirty four gender and sexuality related projects that were scheduled to be presented at the 2020 Senior Projects Day event at Pacific University’s Forest Grove campus. The papers included in this special issue come from a variety of academic disciplines and speak to a wide range of topics, but unable to be disseminated due to the novel coronavirus pandemic

    Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments

    Get PDF
    BACKGROUND: Molecular evolutionary studies of noncoding sequences rely on multiple alignments. Yet how multiple alignment accuracy varies across sequence types, tree topologies, divergences and tools, and further how this variation impacts specific inferences, remains unclear. RESULTS: Here we develop a molecular evolution simulation platform, CisEvolver, with models of background noncoding and transcription factor binding site evolution, and use simulated alignments to systematically examine multiple alignment accuracy and its impact on two key molecular evolutionary inferences: transcription factor binding site conservation and divergence estimation. We find that the accuracy of multiple alignments is determined almost exclusively by the pairwise divergence distance of the two most diverged species and that additional species have a negligible influence on alignment accuracy. Conserved transcription factor binding sites align better than surrounding noncoding DNA yet are often found to be misaligned at relatively short divergence distances, such that studies of binding site gain and loss could easily be confounded by alignment error. Divergence estimates from multiple alignments tend to be overestimated at short divergence distances but reach a tool specific divergence at which they cease to increase, leading to underestimation at long divergences. Our most striking finding was that overall alignment accuracy, binding site alignment accuracy and divergence estimation accuracy vary greatly across branches in a tree and are most accurate for terminal branches connecting sister taxa and least accurate for internal branches connecting sub-alignments. CONCLUSION: Our results suggest that variation in alignment accuracy can lead to errors in molecular evolutionary inferences that could be construed as biological variation. These findings have implications for which species to choose for analyses, what kind of errors would be expected for a given set of species and how multiple alignment tools and phylogenetic inference methods might be improved to minimize or control for alignment errors

    Correction: Benchmarking tools for the alignment of functional noncoding DNA

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.AbstractIn follow-up studies to this work [1], we have identified an error in a single line of code responsible for parsing BLASTZ [2] alignments that affects our previously published results for this alignment tool. This error resulted in a reduction in overall alignment coverage, with a concomitant underestimation of alignment sensitivity and overestimation of alignment specificity. As BLASTZ is an important and widely used alignment tool, we present here the revised results of our performance evaluations for BLASTZ together with previously reported results for the other alignment tools studied, which have been subsequently verified (Figures 1-4). The general conclusions presented in [1] remain unchanged, although the following sections concerning BLASTZ performance must be modified in light of our recent findings. The true overall alignment coverage for BLASTZ with and without insertion/deletion evolution and with and without blocks of constraint is shown in Figure 1, and reveals increased overall coverage in the presence of constrained blocks for intermediate to high divergence distances (Figures 1C & 1D) relative to previous results ([1] Figures 3C & 3D). As a consequence, the true overall sensitivity for BLASTZ is increased for intermediate to high divergence distances, especially in the presence of insertion/deletion evolution and constrained blocks (Figure 2D) relative to previous results ([1] Figure 4D). The most important revisions to [1] concern BLASTZ performance in interspersed blocks of constrained sequences (Figures 3, 4). Figure 3 shows that the true constraint coverage, and therefore constraint sensitivity, of BLASTZ is much improved relative to previous results for intermediate to high divergence distances ([1], Figure 5). Thus BLASTZ has increased constraint coverage relative to overall coverage (cp. Figures 1C & 1D with 3A & 3B), indicating that BLASTZ local alignments preferentially occur in constrained sequences for intermediate to high divergence distances, overturning claims on page 6 of [1] to the contrary. Likewise, the claim that BLASTZ has a "dramatic decrease in constraint sensitivity in the presence of indel evolution" on page 10 of [1] is incorrect. The increase in overall coverage, however, decreases the constraint specificity of BLASTZ for intermediate to high divergence distances (Figure 4A & 4B) relative to previous results ([1] Figure 6A & 6B). This decrease in constraint specificity requires reconsideration of the use of BLASTZ local alignments as specific detectors of constrained noncoding sequences discussed page 10 of [1]. Revised performance statistics for BLASTZ are posted along with previous results at [3]. We apologize for any misconception or inconvenience this error may have caused. References: 1. Pollard DA, Bergman CM, Stoye J, Celniker SE, Eisen MB: Benchmarking tools for the alignment of functional noncoding DNA. BMC Bioinformatics 2004, 5:6. 2. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W: Human-mouse alignments with BLASTZ. Genome Res 2003, 13:103-7. 3. AlignmentBenchmarking [http://rana.lbl.gov/AlignmentBenchmarking]Peer Reviewe

    MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model

    Get PDF
    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding-site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function

    Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting

    Get PDF
    The phylogenetic relationship of the now fully sequenced species Drosophila erecta and D. yakuba with respect to the D. melanogaster species complex has been a subject of controversy. All three possible groupings of the species have been reported in the past, though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. Using the whole genomes of each of these species as well as the four other fully sequenced species in the subgenus Sophophora, we set out to investigate the placement of D. erecta and D. yakuba in the D. melanogaster species group and to understand the cause of the past incongruence. Though we find that the phylogeny grouping D. erecta and D. yakuba together is the best supported, we also find widespread incongruence in nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The time inferred to span the two key speciation events is short enough that under the coalescent model, the incongruence could be the result of incomplete lineage sorting. Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree were spatially clustered. Support for the different trees was found to be linked to recombination such that adjacent genes support the same tree most often in regions of low recombination and substitutions supporting the same tree are most enriched roughly on the same scale as linkage disequilibrium, also consistent with lineage sorting. The incongruence was found to be statistically significant and robust to model and species choice. No systematic biases were found. We conclude that phylogenetic incongruence in the D. melanogaster species complex is the result, at least in part, of incomplete lineage sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many comparative genomics datasets. Methods to infer the correct species tree, the history of every base in the genome, and comparative methods that control for and/or utilize this information will be valuable advancements for the field of comparative genomics

    Surface accumulation in Northern Central Greenland during the last 300 years

    Get PDF
    The internal stratigraphy of snow and ice as imaged by ground-penetrating radar may serve as a source of information on past accumulation. This study presents results from two ground-based radar surveys conducted in Greenland in 2007 and 2015, respectively. The first survey was conducted during the traverse from the ice-core station NGRIP (North Greenland Ice Core Project) to the ice-core station NEEM (North Greenland Eemian Ice Drilling). The second survey was carried out during the traverse from NEEM to the ice-core station EGRIP (East Greenland Ice Core Project) and then onwards to Summit Station. The total length of the radar profiles is 1427 km. From the radar data, we retrieve the large-scale spatial variation of the accumulation rates in the interior of the ice sheet. The accumulation rates range from 0.11 to 0.26 m a−1 ice equivalent with the lowest values found in the northeastern sector towards EGRIP. We find no evidence of temporal or spatial changes in accumulation rates when comparing the 150-year average accumulation rates with the 321-year average accumulation rates. Comparisons with regional climate models reveal that the models underestimate accumulation rates by up to 35% in northeastern Greenland. Our results serve as a robust baseline to detect present changes in either surface accumulation rates or patterns

    Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila

    Get PDF
    The gain and loss of functional transcription factor binding sites has been proposed as a major source of evolutionary change in cis-regulatory DNA and gene expression. We have developed an evolutionary model to study binding-site turnover that uses multiple sequence alignments to assess the evolutionary constraint on individual binding sites, and to map gain and loss events along a phylogenetic tree. We apply this model to study the evolutionary dynamics of binding sites of the Drosophila melanogaster transcription factor Zeste, using genome-wide in vivo (ChIP–chip) binding data to identify functional Zeste binding sites, and the genome sequences of D. melanogaster, D. simulans, D. erecta, and D. yakuba to study their evolution. We estimate that more than 5% of functional Zeste binding sites in D. melanogaster were gained along the D. melanogaster lineage or lost along one of the other lineages. We find that Zeste-bound regions have a reduced rate of binding-site loss and an increased rate of binding-site gain relative to flanking sequences. Finally, we show that binding-site gains and losses are asymmetrically distributed with respect to D. melanogaster, consistent with lineage-specific acquisition and loss of Zeste-responsive regulatory elements

    Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901

    Get PDF
    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a “minimal” model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously

    Bayesian analyses of multiple epistatic QTL models for body weight and body composition in mice

    Get PDF
    To comprehensively investigate the genetic architecture of growth and obesity, we performed Bayesian analyses of multiple epistatic quantitative trait locus (QTL) models for body weights at five ages (12 days, 3, 6, 9 and 12 weeks) and body composition traits (weights of two fat pads and five organs) in mice produced from a cross of the F1 between M16i (selected for rapid growth rate) and CAST/Ei (wild-derived strain of small and lean mice) back to M16i. Bayesian model selection revealed a temporally regulated network of multiple QTL for body weight, involving both strong main effects and epistatic effects. No QTL had strong support for both early and late growth, although overlapping combinations of main and epistatic effects were observed at adjacent ages. Most main effects and epistatic interactions had an opposite effect on early and late growth. The contribution of epistasis was more pronounced for body weights at older ages. Body composition traits were also influenced by an interacting network of multiple QTL. Several main and epistatic effects were shared by the body composition and body weight traits, suggesting that pleiotropy plays an important role in growth and obesity
    corecore