255 research outputs found

    The one-round Voronoi game replayed

    Get PDF
    We consider the one-round Voronoi game, where player one (``White'', called ``Wilma'') places a set of n points in a rectangular area of aspect ratio r <=1, followed by the second player (``Black'', called ``Barney''), who places the same number of points. Each player wins the fraction of the board closest to one of his points, and the goal is to win more than half of the total area. This problem has been studied by Cheong et al., who showed that for large enough nn and r=1, Barney has a strategy that guarantees a fraction of 1/2+a, for some small fixed a. We resolve a number of open problems raised by that paper. In particular, we give a precise characterization of the outcome of the game for optimal play: We show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2 and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity aspects of the game on more general boards, by proving that for a polygon with holes, it is NP-hard to maximize the area Barney can win against a given set of points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in Computational Geometry: Theory and Applications. Extended abstract version appeared in Workshop on Algorithms and Data Structures, Springer Lecture Notes in Computer Science, vol.2748, 2003, pp. 150-16

    Having Your Cake and Eating It Too: Autonomy and Interaction in a Model of Sentence Processing

    Full text link
    Is the human language understander a collection of modular processes operating with relative autonomy, or is it a single integrated process? This ongoing debate has polarized the language processing community, with two fundamentally different types of model posited, and with each camp concluding that the other is wrong. One camp puts forth a model with separate processors and distinct knowledge sources to explain one body of data, and the other proposes a model with a single processor and a homogeneous, monolithic knowledge source to explain the other body of data. In this paper we argue that a hybrid approach which combines a unified processor with separate knowledge sources provides an explanation of both bodies of data, and we demonstrate the feasibility of this approach with the computational model called COMPERE. We believe that this approach brings the language processing community significantly closer to offering human-like language processing systems.Comment: 7 pages, uses aaai.sty macr

    Overview of the 1st international competition on plagiarism detection

    Get PDF
    The 1st International Competition on Plagiarism Detection, held in conjunction with the 3rd PAN workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse, brought together researchers from many disciplines around the exciting retrieval task of automatic plagiarism detection. The competition was divided into the subtasks external plagiarism detection and intrinsic plagiarism detection, which were tackled by 13 participating groups. An important by-product of the competition is an evaluation framework for plagiarism detection, which consists of a large-scale plagiarism corpus and detection quality measures. The framework may serve as a unified test environment to compare future plagiarism detection research. In this paper we describe the corpus design and the quality measures, survey the detection approaches developed by the participants, and compile the achieved performance results of the competitors

    Overview of the 3rd international competition on plagiarism detection

    Get PDF
    This paper overviews eleven plagiarism detectors that have been developed and evaluated within PAN'11. We survey the detection approaches developed for the two sub-tasks "external plagiarism detection" and "intrinsic plagiarism detection," and we report on their detailed evaluation based on the third revised edition of the PAN plagiarism corpus PAN-PC-11

    Overview of the 2nd international competition on plagiarism detection

    Get PDF
    This paper overviews 18 plagiarism detectors that have been developed and evaluated within PAN'10. We start with a unified retrieval process that summarizes the best practices employed this year. Then, the detectors' performances are evaluated in detail, highlighting several important aspects of plagiarism detection, such as obfuscation, intrinsic vs. external plagiarism, and plagiarism case length. Finally, all results are compared to those of last year's competition
    corecore