49 research outputs found

    Structure formation in the Lemaitre-Tolman model

    Full text link
    Structure formation within the Lemaitre-Tolman model is investigated in a general manner. We seek models such that the initial density perturbation within a homogeneous background has a smaller mass than the structure into which it will develop, and the perturbation then accretes more mass during evolution. This is a generalisation of the approach taken by Bonnor in 1956. It is proved that any two spherically symmetric density profiles specified on any two constant time slices can be joined by a Lemaitre-Tolman evolution, and exact implicit formulae for the arbitrary functions that determine the resulting L-T model are obtained. Examples of the process are investigated numerically.Comment: LaTeX 2e plus 14 .eps & .ps figure files. 33 pages including figures. Minor revisions of text and data make it more precise and consistent. Currently scheduled for Phys Rev D vol 64, December 15 issu

    The physical meaning of the "boost-rotation symmetric" solutions within the general interpretation of Einstein's theory of gravitation

    Full text link
    The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the ``theories of relativity'', based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.Comment: 9 pages, 1 figure; text to appear in General Relativity and Gravitatio

    A modification of Einstein-Schrodinger theory that contains Einstein-Maxwell-Yang-Mills theory

    Full text link
    The Lambda-renormalized Einstein-Schrodinger theory is a modification of the original Einstein-Schrodinger theory in which a cosmological constant term is added to the Lagrangian, and it has been shown to closely approximate Einstein-Maxwell theory. Here we generalize this theory to non-Abelian fields by letting the fields be composed of dxd Hermitian matrices. The resulting theory incorporates the U(1) and SU(d) gauge terms of Einstein-Maxwell-Yang-Mills theory, and is invariant under U(1) and SU(d) gauge transformations. The special case where symmetric fields are multiples of the identity matrix closely approximates Einstein-Maxwell-Yang-Mills theory in that the extra terms in the field equations are 10^-13 of the usual terms for worst-case fields accessible to measurement. The theory contains a symmetric metric and Hermitian vector potential, and is easily coupled to the additional fields of Weinberg-Salam theory or flipped SU(5) GUT theory. We also consider the case where symmetric fields have small traceless parts, and show how this suggests a possible dark matter candidate.Comment: latex2e, generalized from U(1)xSU(2) to U(1)xSU(d

    Alternative scheme to generate a supersinglet state of three-level atoms

    Get PDF
    In this paper we propose an alternative scheme to generate a supersinglet state of three three-level atoms via a single-mode of a cavity QED based on the two-photon transitions described by the 'full microscopical Hamiltonian approach'. In it, three three-level atoms prepared in suitable initial states are sequentially sent through the cavity originally prepared in its vacuum state. After an appropriate choice of the atom-cavity interaction times plus a field detection the state that describes the whole atom-field system is projected in the desired supersinglet state. The fidelity and success probability of the state as well as the practical feasibility of the scheme are discussed.Comment: 10 pages, 3 figures, 4 table

    Gravitomagnetism and the Clock Effect

    Get PDF
    The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic clock effect. This remarkable effect, which involves the difference in the proper periods of a standard clock in prograde and retrograde circular geodesic orbits around a rotating mass, is discussed in detail. The implications of this effect for the notion of ``inertial dragging'' in the general theory of relativity are presented. The theory of the clock effect is developed within the PPN framework and the possibility of measuring it via spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS, CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27 August 1999; Bad Honnef, Germany

    Gauged motion in general relativity and in Kaluza-Klein theories

    Full text link
    In a recent paper [1] a new generalization of the Killing motion, the {\it gauged motion}, has been introduced for stationary spacetimes where it was shown that the physical symmetries of such spacetimes are well described through this new symmetry. In this article after a more detailed study in the stationary case we present the definition of gauged motion for general spacetimes. The definition is based on the gauged Lie derivative induced by a threading family of observers and the relevant reparametrization invariance. We also extend the gauged motion to the case of Kaluza-Klein theories.Comment: 42 pages, revised version, typos correction along with some minor changes, Revtex forma

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    Energetics of the Einstein-Rosen spacetime

    Full text link
    A study covering some aspects of the Einstein--Rosen metric is presented. The electric and magnetic parts of the Weyl tensor are calculated. It is shown that there are no purely magnetic E--R spacetimes, and also that a purely electric E--R spacetime is necessarily static. The geodesics equations are found and circular ones are analyzed in detail. The super--Poynting and the ``Lagrangian'' Poynting vectors are calculated and their expressions are found for two specific examples. It is shown that for a pulse--type solution, both expressions describe an inward radially directed flow of energy, far behind the wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in Int.J.Theor.Phy

    Minimum mass-radius ratio for charged gravitational objects

    Get PDF
    We rigorously prove that for compact charged general relativistic objects there is a lower bound for the mass-radius ratio. This result follows from the same Buchdahl type inequality for charged objects, which has been extensively used for the proof of the existence of an upper bound for the mass-radius ratio. The effect of the vacuum energy (a cosmological constant) on the minimum mass is also taken into account. Several bounds on the total charge, mass and the vacuum energy for compact charged objects are obtained from the study of the Ricci scalar invariants. The total energy (including the gravitational one) and the stability of the objects with minimum mass-radius ratio is also considered, leading to a representation of the mass and radius of the charged objects with minimum mass-radius ratio in terms of the charge and vacuum energy only.Comment: 19 pages, accepted by GRG, references corrected and adde
    corecore