134 research outputs found

    Reduction and Emergence in Bose-Einstein Condensates

    Get PDF
    A closer look at some proposed Gedanken-experiments on BECs promises to shed light on several aspects of reduction and emergence in physics. These include the relations between classical descriptions and different quantum treatments of macroscopic systems, and the emergence of new properties and even new objects as a result of spontaneous symmetry breaking

    Characterizing Width Uniformity by Wave Propagation

    Full text link
    This work describes a novel image analysis approach to characterize the uniformity of objects in agglomerates by using the propagation of normal wavefronts. The problem of width uniformity is discussed and its importance for the characterization of composite structures normally found in physics and biology highlighted. The methodology involves identifying each cluster (i.e. connected component) of interest, which can correspond to objects or voids, and estimating the respective medial axes by using a recently proposed wavefront propagation approach, which is briefly reviewed. The distance values along such axes are identified and their mean and standard deviation values obtained. As illustrated with respect to synthetic and real objects (in vitro cultures of neuronal cells), the combined use of these two features provide a powerful description of the uniformity of the separation between the objects, presenting potential for several applications in material sciences and biology.Comment: 14 pages, 23 figures, 1 table, 1 referenc

    Nonlocal appearance of a macroscopic angular momentum

    Full text link
    We discuss a type of measurement in which a macroscopically large angular momentum (spin) is "created" nonlocally by the measurement of just a few atoms from a double Fock state. This procedure apparently leads to a blatant nonconservation of a macroscopic variable - the local angular momentum. We argue that while this gedankenexperiment provides a striking illustration of several counter-intuitive features of quantum mechanics, it does not imply a non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur

    Generation of entangled states and error protection from adiabatic avoided level crossings

    Get PDF
    We consider the environment-affected dynamics of NN self-interacting particles living in one-dimensional double wells. Two topics are dealt with. First, we consider the production of entangled states of two-level systems. We show that by adiabatically varying the well biases we may dynamically generate maximally entangled states, starting from initially unentangled product states. Entanglement degradation due to a common type of environmental influence is then computed by solving a master equation. However, we also demonstrate that entanglement production is unaffected if the system-environment coupling is of the type that induces ``motional narrowing''. As our second but related topic, we construct a different master equation that seamlessly merges error protection/detection dynamics for quantum information with the environmental couplings responsible for producing the errors in the first place. Adiabatic avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.

    Relational EPR

    Full text link
    We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of 'non-locality', when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.Comment: Revised, published versio

    Quantum Mechanics and Leggett's Inequalities

    Full text link
    We show that when the proper description of the behaviour of individual photons or spin 1/2 particles in a spherically symmetric entangled pair is done through the use of the density matrix, the Leggett's inequality is not violated by quantum mechanics.Comment: 7 pages, no figures. A missing global sign in the r.h.s. of eq. (4.10) in section 4 of version 1 (v1) invalidates the conclusion of that particular section, which is then suppressed in the present version (v2

    Cosmological black holes as voids progenitors. I. Simulations

    Full text link
    Cosmological black holes (CBH), i.e. black holes with masses larger than $10^{14} solar masses, have been proposed as possible progenitors of galaxy voids (Stornaiolo 2002). The presence of a CBH in the central regions of a void should induce significant gravitational lensing effects and in this paper we discuss such gravitational signatures using simulated data. These signatures may be summarized as follows: i) a blind spot in the projected position of the CBH where no objects can be detected; ii) an excess of faint secondary images; iii) an excess of double images having a characteristic angular separation. All these signatures are shown to be detectable in future deep surveys.Comment: 5 pages, 5 figures, submitted to MNRA

    Many particle entanglement in two-component Bose-Einstein Condensates

    Full text link
    We investigate schemes to dynamically create many particle entangled states of a two component Bose-Einstein condensate in a very short time proportional to 1/N where NN is the number of condensate particles. For small NN we compare exact numerical calculations with analytical semiclassical estimates and find very good agreement for N50N \geq 50. We also estimate the effect of decoherence on our scheme, study possible scenarios for measuring the entangled states, and investigate experimental imperfections.Comment: 12 pages, 8 figure

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009
    corecore