5,766 research outputs found

    Variability of fundamental constants

    Full text link
    If the fine structure constant is not really constant, is this due to a variation of ee, \hbar, or cc? It is argued that the only reasonable conclusion is a variable speed of light.Comment: preliminary draft, comments welcom

    Doubly Special Relativity with a minimum speed and the Uncertainty Principle

    Full text link
    The present work aims to search for an implementation of a new symmetry in the space-time by introducing the idea of an invariant minimum speed scale (VV). Such a lowest limit VV, being unattainable by the particles, represents a fundamental and preferred reference frame connected to a universal background field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new principle of symmetry in the space-time at the subatomic level for very low energies close to the background frame (vVv\approx V), providing a fundamental understanding for the uncertainty principle, i.e., the uncertainty relations should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in: http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv admin note: substantial text overlap with arXiv:physics/0702095, arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120

    Alternative derivation of the relativistic contribution to perihelic precession

    Full text link
    An alternative derivation of the first-order relativistic contribution to perihelic precession is presented. Orbital motion in the Schwarzschild geometry is considered in the Keplerian limit, and the orbit equation is derived for approximately elliptical motion. The method of solution makes use of coordinate transformations and the correspondence principle, rather than the standard perturbative approach. The form of the resulting orbit equation is similar to that derived from Newtonian mechanics and includes first-order corrections to Kepler's orbits due to general relativity. The associated relativistic contribution to perihelic precession agrees with established first-order results. The reduced radius for the circular orbit is in agreement to first-order with that calculated from the Schwarzschild effective potential. The method of solution is understandable by undergraduate students.Comment: 12 pages, 2 figures. Accepted for publication in the American Journal of Physic

    Analytic Formulas for the Orientation Dependence of Step Stiffness and Line Tension: Key Ingredients for Numerical Modeling

    Full text link
    We present explicit analytic, twice-differentiable expressions for the temperature-dependent anisotropic step line tension and step stiffness for the two principal surfaces of face-centered-cubic crystals, the square {001} and the hexagonal {111}. These expressions improve on simple expressions that are valid only for low temperatures and away from singular orientations. They are well suited for implementation into numerical methods such as finite-element simulation of step evolution.Comment: 10 pages; reformatted with revtex (with typos corrected) from version accepted by SIAM--Multiscale Modeling and Simulation on Nov. 21, 2006; greatly expanded introduction, several minor fixes (mostly stylistic

    On the Trace-Free Einstein Equations as a Viable Alternative to General Relativity

    Full text link
    The quantum field theoretic prediction for the vacuum energy density leads to a value for the effective cosmological constant that is incorrect by between 60 to 120 orders of magnitude. We review an old proposal of replacing Einstein's Field Equations by their trace-free part (the Trace-Free Einstein Equations), together with an independent assumption of energy--momentum conservation by matter fields. While this does not solve the fundamental issue of why the cosmological constant has the value that is observed cosmologically, it is indeed a viable theory that resolves the problem of the discrepancy between the vacuum energy density and the observed value of the cosmological constant. However, one has to check that, as well as preserving the standard cosmological equations, this does not destroy other predictions, such as the junction conditions that underlie the use of standard stellar models. We confirm that no problems arise here: hence, the Trace-Free Einstein Equations are indeed viable for cosmological and astrophysical applications.Comment: Substantial changes from v1 including added author, change of title and emphasis of the paper although all original results of v1. remai

    The mystery of the cosmic vacuum energy density and the accelerated expansion of the Universe

    Get PDF
    After a short history of the Λ\Lambda-term it is explained why the (effective) cosmological constant is expected to obtain contributions from short-distance-physics, corresponding to an energy scale of at least 100 GeV. The actual tiny value of the cosmological constant in any natural scale of units represents, therefore, one of the deepest mysteries of present day fundamental physics. We also briefly discuss recent astronomical evidence for a cosmologically significant vacuum energy density causing an accelerating expansion of the universe. This arises mainly from the Hubble diagram of type Ia supernovae and from the observed temperature fluctuations of the cosmic microwave background radiation. If this should become an established fact, we are also confronted with a disturbing {\it cosmic coincidence} problem.Comment: 12 pages, 2 figures, iopart macros include

    The Effects of Next-Nearest-Neighbor Interactions on the Orientation Dependence of Step Stiffness: Reconciling Theory with Experiment for Cu(001)

    Get PDF
    Within the solid-on-solid (SOS) approximation, we carry out a calculation of the orientational dependence of the step stiffness on a square lattice with nearest and next-nearest neighbor interactions. At low temperature our result reduces to a simple, transparent expression. The effect of the strongest trio (three-site, non pairwise) interaction can easily be incorporated by modifying the interpretation of the two pairwise energies. The work is motivated by a calculation based on nearest neighbors that underestimates the stiffness by a factor of 4 in directions away from close-packed directions, and a subsequent estimate of the stiffness in the two high-symmetry directions alone that suggested that inclusion of next-nearest-neighbor attractions could fully explain the discrepancy. As in these earlier papers, the discussion focuses on Cu(001).Comment: 8 pages, 3 figures, submitted to Phys. Rev.

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation

    Get PDF
    It is shown that the energy of a mode of a classical chaotic field, following the continuous exponential distribution as a classical random variable, can be uniquely decomposed into a sum of its fractional part and of its integer part. The integer part is a discrete random variable (we call it Planck variable) whose distribution is just the Bose distribution yielding the Planck law of black-body radiation. The fractional part is the dark part (we call is dark variable) with a continuous distribution, which is, of course, not observed in the experiments. It is proved that the Bose distribution is infinitely divisible, and the irreducible decomposition of it is given. The Planck variable can be decomposed into an infinite sum of independent binary random variables representing the binary photons (more accurately photo-molecules or photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons follow the Fermi statistics. Consequently, the black-body radiation can be viewed as a mixture of statistically and thermodynamically independent fermion gases consisting of binary photons. The binary photons give a natural tool for the dyadic expansion of arbitrary (but not coherent) ordinary photon excitations. It is shown that the binary photons have wave-particle fluctuations of fermions. These fluctuations combine to give the wave-particle fluctuations of the original bosonic photons expressed by the Einstein fluctuation formula.Comment: 29 page

    New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory

    Full text link
    There is a unique Lorentz-violating modification of the Maxwell theory of photons, which maintains gauge invariance, CPT, and renormalizability. Restricting the modified-Maxwell theory to the isotropic sector and adding a standard spin-one-half Dirac particle p^\pm with minimal coupling to the nonstandard photon \widetilde{\gamma}, the resulting modified-quantum-electrodynamics model involves a single dimensionless "deformation parameter," \widetilde{\kappa}_{tr}. The exact tree-level decay rates for two processes have been calculated: vacuum Cherenkov radiation p^\pm \to p^\pm \widetilde{\gamma} for the case of positive \widetilde{\kappa}_{tr} and photon decay \widetilde{\gamma} \to p^+ p^- for the case of negative \widetilde{\kappa}_{tr}. From the inferred absence of these decays for a particular high-quality ultrahigh-energy-cosmic-ray event detected at the Pierre Auger Observatory and an excess of TeV gamma-ray events observed by the High Energy Stereoscopic System telescopes, a two-sided bound on \widetilde{\kappa}_{tr} is obtained, which improves by eight orders of magnitude upon the best direct laboratory bound. The implications of this result are briefly discussed.Comment: 18 pages, v5: published version in preprint styl
    corecore